| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ack |  |-  Ack = seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) | 
						
							| 2 | 1 | fveq1i |  |-  ( Ack ` ( M + 1 ) ) = ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` ( M + 1 ) ) | 
						
							| 3 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 4 |  | id |  |-  ( M e. NN0 -> M e. NN0 ) | 
						
							| 5 |  | eqid |  |-  ( M + 1 ) = ( M + 1 ) | 
						
							| 6 | 1 | eqcomi |  |-  seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) = Ack | 
						
							| 7 | 6 | fveq1i |  |-  ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` M ) = ( Ack ` M ) | 
						
							| 8 | 7 | a1i |  |-  ( M e. NN0 -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` M ) = ( Ack ` M ) ) | 
						
							| 9 |  | eqidd |  |-  ( M e. NN0 -> ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) = ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) | 
						
							| 10 |  | nn0p1gt0 |  |-  ( M e. NN0 -> 0 < ( M + 1 ) ) | 
						
							| 11 | 10 | gt0ne0d |  |-  ( M e. NN0 -> ( M + 1 ) =/= 0 ) | 
						
							| 12 | 11 | adantr |  |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> ( M + 1 ) =/= 0 ) | 
						
							| 13 |  | neeq1 |  |-  ( i = ( M + 1 ) -> ( i =/= 0 <-> ( M + 1 ) =/= 0 ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> ( i =/= 0 <-> ( M + 1 ) =/= 0 ) ) | 
						
							| 15 | 12 14 | mpbird |  |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> i =/= 0 ) | 
						
							| 16 | 15 | neneqd |  |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> -. i = 0 ) | 
						
							| 17 | 16 | iffalsed |  |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) = i ) | 
						
							| 18 |  | simpr |  |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> i = ( M + 1 ) ) | 
						
							| 19 | 17 18 | eqtrd |  |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) = ( M + 1 ) ) | 
						
							| 20 |  | peano2nn0 |  |-  ( M e. NN0 -> ( M + 1 ) e. NN0 ) | 
						
							| 21 | 9 19 20 20 | fvmptd |  |-  ( M e. NN0 -> ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` ( M + 1 ) ) = ( M + 1 ) ) | 
						
							| 22 | 3 4 5 8 21 | seqp1d |  |-  ( M e. NN0 -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` ( M + 1 ) ) = ( ( Ack ` M ) ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) ( M + 1 ) ) ) | 
						
							| 23 |  | eqidd |  |-  ( M e. NN0 -> ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) = ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) ) | 
						
							| 24 |  | fveq2 |  |-  ( f = ( Ack ` M ) -> ( IterComp ` f ) = ( IterComp ` ( Ack ` M ) ) ) | 
						
							| 25 | 24 | fveq1d |  |-  ( f = ( Ack ` M ) -> ( ( IterComp ` f ) ` ( n + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ) | 
						
							| 26 | 25 | fveq1d |  |-  ( f = ( Ack ` M ) -> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) | 
						
							| 27 | 26 | mpteq2dv |  |-  ( f = ( Ack ` M ) -> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 28 | 27 | ad2antrl |  |-  ( ( M e. NN0 /\ ( f = ( Ack ` M ) /\ j = ( M + 1 ) ) ) -> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 29 |  | fvexd |  |-  ( M e. NN0 -> ( Ack ` M ) e. _V ) | 
						
							| 30 |  | ovexd |  |-  ( M e. NN0 -> ( M + 1 ) e. _V ) | 
						
							| 31 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 32 | 31 | mptex |  |-  ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) e. _V | 
						
							| 33 | 32 | a1i |  |-  ( M e. NN0 -> ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) e. _V ) | 
						
							| 34 | 23 28 29 30 33 | ovmpod |  |-  ( M e. NN0 -> ( ( Ack ` M ) ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 35 | 22 34 | eqtrd |  |-  ( M e. NN0 -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 36 | 2 35 | eqtrid |  |-  ( M e. NN0 -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |