| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ack | ⊢ Ack  =  seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) | 
						
							| 2 | 1 | fveq1i | ⊢ ( Ack ‘ ( 𝑀  +  1 ) )  =  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ ( 𝑀  +  1 ) ) | 
						
							| 3 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 4 |  | id | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑀  +  1 )  =  ( 𝑀  +  1 ) | 
						
							| 6 | 1 | eqcomi | ⊢ seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) )  =  Ack | 
						
							| 7 | 6 | fveq1i | ⊢ ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 𝑀 )  =  ( Ack ‘ 𝑀 ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑀  ∈  ℕ0  →  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 𝑀 )  =  ( Ack ‘ 𝑀 ) ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) | 
						
							| 10 |  | nn0p1gt0 | ⊢ ( 𝑀  ∈  ℕ0  →  0  <  ( 𝑀  +  1 ) ) | 
						
							| 11 | 10 | gt0ne0d | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ≠  0 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  ( 𝑀  +  1 )  ≠  0 ) | 
						
							| 13 |  | neeq1 | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( 𝑖  ≠  0  ↔  ( 𝑀  +  1 )  ≠  0 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  ( 𝑖  ≠  0  ↔  ( 𝑀  +  1 )  ≠  0 ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  𝑖  ≠  0 ) | 
						
							| 16 | 15 | neneqd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  ¬  𝑖  =  0 ) | 
						
							| 17 | 16 | iffalsed | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 )  =  𝑖 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  𝑖  =  ( 𝑀  +  1 ) ) | 
						
							| 19 | 17 18 | eqtrd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑖  =  ( 𝑀  +  1 ) )  →  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 )  =  ( 𝑀  +  1 ) ) | 
						
							| 20 |  | peano2nn0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 21 | 9 19 20 20 | fvmptd | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ ( 𝑀  +  1 ) )  =  ( 𝑀  +  1 ) ) | 
						
							| 22 | 3 4 5 8 21 | seqp1d | ⊢ ( 𝑀  ∈  ℕ0  →  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ ( 𝑀  +  1 ) )  =  ( ( Ack ‘ 𝑀 ) ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ( 𝑀  +  1 ) ) ) | 
						
							| 23 |  | eqidd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) )  =  ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑓  =  ( Ack ‘ 𝑀 )  →  ( IterComp ‘ 𝑓 )  =  ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ) | 
						
							| 25 | 24 | fveq1d | ⊢ ( 𝑓  =  ( Ack ‘ 𝑀 )  →  ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) )  =  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 26 | 25 | fveq1d | ⊢ ( 𝑓  =  ( Ack ‘ 𝑀 )  →  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) | 
						
							| 27 | 26 | mpteq2dv | ⊢ ( 𝑓  =  ( Ack ‘ 𝑀 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 28 | 27 | ad2antrl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ( 𝑓  =  ( Ack ‘ 𝑀 )  ∧  𝑗  =  ( 𝑀  +  1 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 29 |  | fvexd | ⊢ ( 𝑀  ∈  ℕ0  →  ( Ack ‘ 𝑀 )  ∈  V ) | 
						
							| 30 |  | ovexd | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  V ) | 
						
							| 31 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 32 | 31 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  ∈  V | 
						
							| 33 | 32 | a1i | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  ∈  V ) | 
						
							| 34 | 23 28 29 30 33 | ovmpod | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( Ack ‘ 𝑀 ) ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 35 | 22 34 | eqtrd | ⊢ ( 𝑀  ∈  ℕ0  →  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 36 | 2 35 | eqtrid | ⊢ ( 𝑀  ∈  ℕ0  →  ( Ack ‘ ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) |