| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackvalsuc1mpt | ⊢ ( 𝑀  ∈  ℕ0  →  ( Ack ‘ ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( Ack ‘ ( 𝑀  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 3 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑁  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) )  =  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 4 | 3 | fveq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  ∧  𝑛  =  𝑁 )  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 |  | fvexd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 )  ∈  V ) | 
						
							| 8 | 2 5 6 7 | fvmptd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( Ack ‘ ( 𝑀  +  1 ) ) ‘ 𝑁 )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) ) |