Step |
Hyp |
Ref |
Expression |
1 |
|
ackvalsuc1mpt |
⊢ ( 𝑀 ∈ ℕ0 → ( Ack ‘ ( 𝑀 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( Ack ‘ ( 𝑀 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |
3 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ) |
4 |
3
|
fveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 = 𝑁 ) → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) |
6 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
7 |
|
fvexd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ∈ V ) |
8 |
2 5 6 7
|
fvmptd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ 𝑁 ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) |