Step |
Hyp |
Ref |
Expression |
1 |
|
ackvalsuc1mpt |
|- ( M e. NN0 -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
2 |
1
|
adantr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
3 |
|
fvoveq1 |
|- ( n = N -> ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) |
4 |
3
|
fveq1d |
|- ( n = N -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) |
5 |
4
|
adantl |
|- ( ( ( M e. NN0 /\ N e. NN0 ) /\ n = N ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) |
6 |
|
simpr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> N e. NN0 ) |
7 |
|
fvexd |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) e. _V ) |
8 |
2 5 6 7
|
fvmptd |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` N ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) |