| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackvalsuc1mpt |  |-  ( M e. NN0 -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 3 |  | fvoveq1 |  |-  ( n = N -> ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) | 
						
							| 4 | 3 | fveq1d |  |-  ( n = N -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( M e. NN0 /\ N e. NN0 ) /\ n = N ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) | 
						
							| 6 |  | simpr |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 7 |  | fvexd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) e. _V ) | 
						
							| 8 | 2 5 6 7 | fvmptd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` N ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) |