| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 2 | 1 | fveq2i |  |-  ( Ack ` 2 ) = ( Ack ` ( 1 + 1 ) ) | 
						
							| 3 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 4 |  | ackvalsuc1mpt |  |-  ( 1 e. NN0 -> ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) | 
						
							| 6 |  | peano2nn0 |  |-  ( n e. NN0 -> ( n + 1 ) e. NN0 ) | 
						
							| 7 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 8 |  | ackval1 |  |-  ( Ack ` 1 ) = ( i e. NN0 |-> ( i + 2 ) ) | 
						
							| 9 | 8 | itcovalpc |  |-  ( ( ( n + 1 ) e. NN0 /\ 2 e. NN0 ) -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) | 
						
							| 10 | 6 7 9 | sylancl |  |-  ( n e. NN0 -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) | 
						
							| 11 | 10 | fveq1d |  |-  ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ` 1 ) ) | 
						
							| 12 |  | eqidd |  |-  ( n e. NN0 -> ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( i = 1 -> ( i + ( 2 x. ( n + 1 ) ) ) = ( 1 + ( 2 x. ( n + 1 ) ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( n e. NN0 /\ i = 1 ) -> ( i + ( 2 x. ( n + 1 ) ) ) = ( 1 + ( 2 x. ( n + 1 ) ) ) ) | 
						
							| 15 | 3 | a1i |  |-  ( n e. NN0 -> 1 e. NN0 ) | 
						
							| 16 |  | ovexd |  |-  ( n e. NN0 -> ( 1 + ( 2 x. ( n + 1 ) ) ) e. _V ) | 
						
							| 17 | 12 14 15 16 | fvmptd |  |-  ( n e. NN0 -> ( ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ` 1 ) = ( 1 + ( 2 x. ( n + 1 ) ) ) ) | 
						
							| 18 |  | nn0cn |  |-  ( n e. NN0 -> n e. CC ) | 
						
							| 19 |  | 1cnd |  |-  ( n e. CC -> 1 e. CC ) | 
						
							| 20 |  | 2cnd |  |-  ( n e. CC -> 2 e. CC ) | 
						
							| 21 |  | peano2cn |  |-  ( n e. CC -> ( n + 1 ) e. CC ) | 
						
							| 22 | 20 21 | mulcld |  |-  ( n e. CC -> ( 2 x. ( n + 1 ) ) e. CC ) | 
						
							| 23 | 19 22 | addcomd |  |-  ( n e. CC -> ( 1 + ( 2 x. ( n + 1 ) ) ) = ( ( 2 x. ( n + 1 ) ) + 1 ) ) | 
						
							| 24 |  | id |  |-  ( n e. CC -> n e. CC ) | 
						
							| 25 | 20 24 19 | adddid |  |-  ( n e. CC -> ( 2 x. ( n + 1 ) ) = ( ( 2 x. n ) + ( 2 x. 1 ) ) ) | 
						
							| 26 | 25 | oveq1d |  |-  ( n e. CC -> ( ( 2 x. ( n + 1 ) ) + 1 ) = ( ( ( 2 x. n ) + ( 2 x. 1 ) ) + 1 ) ) | 
						
							| 27 | 20 24 | mulcld |  |-  ( n e. CC -> ( 2 x. n ) e. CC ) | 
						
							| 28 | 20 19 | mulcld |  |-  ( n e. CC -> ( 2 x. 1 ) e. CC ) | 
						
							| 29 | 27 28 19 | addassd |  |-  ( n e. CC -> ( ( ( 2 x. n ) + ( 2 x. 1 ) ) + 1 ) = ( ( 2 x. n ) + ( ( 2 x. 1 ) + 1 ) ) ) | 
						
							| 30 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 31 | 30 | oveq1i |  |-  ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) | 
						
							| 32 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 33 | 31 32 | eqtri |  |-  ( ( 2 x. 1 ) + 1 ) = 3 | 
						
							| 34 | 33 | a1i |  |-  ( n e. CC -> ( ( 2 x. 1 ) + 1 ) = 3 ) | 
						
							| 35 | 34 | oveq2d |  |-  ( n e. CC -> ( ( 2 x. n ) + ( ( 2 x. 1 ) + 1 ) ) = ( ( 2 x. n ) + 3 ) ) | 
						
							| 36 | 29 35 | eqtrd |  |-  ( n e. CC -> ( ( ( 2 x. n ) + ( 2 x. 1 ) ) + 1 ) = ( ( 2 x. n ) + 3 ) ) | 
						
							| 37 | 23 26 36 | 3eqtrd |  |-  ( n e. CC -> ( 1 + ( 2 x. ( n + 1 ) ) ) = ( ( 2 x. n ) + 3 ) ) | 
						
							| 38 | 18 37 | syl |  |-  ( n e. NN0 -> ( 1 + ( 2 x. ( n + 1 ) ) ) = ( ( 2 x. n ) + 3 ) ) | 
						
							| 39 | 11 17 38 | 3eqtrd |  |-  ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 x. n ) + 3 ) ) | 
						
							| 40 | 39 | mpteq2ia |  |-  ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) | 
						
							| 41 | 2 5 40 | 3eqtri |  |-  ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) |