Step |
Hyp |
Ref |
Expression |
1 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
2 |
1
|
fveq2i |
|- ( Ack ` 3 ) = ( Ack ` ( 2 + 1 ) ) |
3 |
|
2nn0 |
|- 2 e. NN0 |
4 |
|
ackvalsuc1mpt |
|- ( 2 e. NN0 -> ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
5 |
3 4
|
ax-mp |
|- ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) |
6 |
|
peano2nn0 |
|- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
7 |
|
3nn0 |
|- 3 e. NN0 |
8 |
|
ackval2 |
|- ( Ack ` 2 ) = ( i e. NN0 |-> ( ( 2 x. i ) + 3 ) ) |
9 |
8
|
itcovalt2 |
|- ( ( ( n + 1 ) e. NN0 /\ 3 e. NN0 ) -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) |
10 |
6 7 9
|
sylancl |
|- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) |
11 |
10
|
fveq1d |
|- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) ) |
12 |
|
eqidd |
|- ( n e. NN0 -> ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) |
13 |
|
oveq1 |
|- ( i = 1 -> ( i + 3 ) = ( 1 + 3 ) ) |
14 |
|
3cn |
|- 3 e. CC |
15 |
|
ax-1cn |
|- 1 e. CC |
16 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
17 |
14 15 16
|
addcomli |
|- ( 1 + 3 ) = 4 |
18 |
13 17
|
eqtrdi |
|- ( i = 1 -> ( i + 3 ) = 4 ) |
19 |
18
|
oveq1d |
|- ( i = 1 -> ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) = ( 4 x. ( 2 ^ ( n + 1 ) ) ) ) |
20 |
19
|
oveq1d |
|- ( i = 1 -> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) = ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) |
21 |
20
|
adantl |
|- ( ( n e. NN0 /\ i = 1 ) -> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) = ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) |
22 |
|
1nn0 |
|- 1 e. NN0 |
23 |
22
|
a1i |
|- ( n e. NN0 -> 1 e. NN0 ) |
24 |
|
ovexd |
|- ( n e. NN0 -> ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) e. _V ) |
25 |
12 21 23 24
|
fvmptd |
|- ( n e. NN0 -> ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) = ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) |
26 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
27 |
26
|
eqcomi |
|- 4 = ( 2 ^ 2 ) |
28 |
27
|
a1i |
|- ( n e. NN0 -> 4 = ( 2 ^ 2 ) ) |
29 |
28
|
oveq1d |
|- ( n e. NN0 -> ( 4 x. ( 2 ^ ( n + 1 ) ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ ( n + 1 ) ) ) ) |
30 |
|
2cnd |
|- ( n e. NN0 -> 2 e. CC ) |
31 |
3
|
a1i |
|- ( n e. NN0 -> 2 e. NN0 ) |
32 |
30 6 31
|
expaddd |
|- ( n e. NN0 -> ( 2 ^ ( 2 + ( n + 1 ) ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ ( n + 1 ) ) ) ) |
33 |
|
nn0cn |
|- ( n e. NN0 -> n e. CC ) |
34 |
|
1cnd |
|- ( n e. NN0 -> 1 e. CC ) |
35 |
30 33 34
|
add12d |
|- ( n e. NN0 -> ( 2 + ( n + 1 ) ) = ( n + ( 2 + 1 ) ) ) |
36 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
37 |
36
|
oveq2i |
|- ( n + ( 2 + 1 ) ) = ( n + 3 ) |
38 |
35 37
|
eqtrdi |
|- ( n e. NN0 -> ( 2 + ( n + 1 ) ) = ( n + 3 ) ) |
39 |
38
|
oveq2d |
|- ( n e. NN0 -> ( 2 ^ ( 2 + ( n + 1 ) ) ) = ( 2 ^ ( n + 3 ) ) ) |
40 |
29 32 39
|
3eqtr2d |
|- ( n e. NN0 -> ( 4 x. ( 2 ^ ( n + 1 ) ) ) = ( 2 ^ ( n + 3 ) ) ) |
41 |
40
|
oveq1d |
|- ( n e. NN0 -> ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |
42 |
11 25 41
|
3eqtrd |
|- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |
43 |
42
|
mpteq2ia |
|- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |
44 |
2 5 43
|
3eqtri |
|- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |