| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 2 | 1 | fveq2i |  |-  ( Ack ` 3 ) = ( Ack ` ( 2 + 1 ) ) | 
						
							| 3 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 4 |  | ackvalsuc1mpt |  |-  ( 2 e. NN0 -> ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) | 
						
							| 6 |  | peano2nn0 |  |-  ( n e. NN0 -> ( n + 1 ) e. NN0 ) | 
						
							| 7 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 8 |  | ackval2 |  |-  ( Ack ` 2 ) = ( i e. NN0 |-> ( ( 2 x. i ) + 3 ) ) | 
						
							| 9 | 8 | itcovalt2 |  |-  ( ( ( n + 1 ) e. NN0 /\ 3 e. NN0 ) -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) | 
						
							| 10 | 6 7 9 | sylancl |  |-  ( n e. NN0 -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) | 
						
							| 11 | 10 | fveq1d |  |-  ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) ) | 
						
							| 12 |  | eqidd |  |-  ( n e. NN0 -> ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( i = 1 -> ( i + 3 ) = ( 1 + 3 ) ) | 
						
							| 14 |  | 3cn |  |-  3 e. CC | 
						
							| 15 |  | ax-1cn |  |-  1 e. CC | 
						
							| 16 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 17 | 14 15 16 | addcomli |  |-  ( 1 + 3 ) = 4 | 
						
							| 18 | 13 17 | eqtrdi |  |-  ( i = 1 -> ( i + 3 ) = 4 ) | 
						
							| 19 | 18 | oveq1d |  |-  ( i = 1 -> ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) = ( 4 x. ( 2 ^ ( n + 1 ) ) ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( i = 1 -> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) = ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( n e. NN0 /\ i = 1 ) -> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) = ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) | 
						
							| 22 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 23 | 22 | a1i |  |-  ( n e. NN0 -> 1 e. NN0 ) | 
						
							| 24 |  | ovexd |  |-  ( n e. NN0 -> ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) e. _V ) | 
						
							| 25 | 12 21 23 24 | fvmptd |  |-  ( n e. NN0 -> ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) = ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) | 
						
							| 26 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 27 | 26 | eqcomi |  |-  4 = ( 2 ^ 2 ) | 
						
							| 28 | 27 | a1i |  |-  ( n e. NN0 -> 4 = ( 2 ^ 2 ) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( n e. NN0 -> ( 4 x. ( 2 ^ ( n + 1 ) ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ ( n + 1 ) ) ) ) | 
						
							| 30 |  | 2cnd |  |-  ( n e. NN0 -> 2 e. CC ) | 
						
							| 31 | 3 | a1i |  |-  ( n e. NN0 -> 2 e. NN0 ) | 
						
							| 32 | 30 6 31 | expaddd |  |-  ( n e. NN0 -> ( 2 ^ ( 2 + ( n + 1 ) ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ ( n + 1 ) ) ) ) | 
						
							| 33 |  | nn0cn |  |-  ( n e. NN0 -> n e. CC ) | 
						
							| 34 |  | 1cnd |  |-  ( n e. NN0 -> 1 e. CC ) | 
						
							| 35 | 30 33 34 | add12d |  |-  ( n e. NN0 -> ( 2 + ( n + 1 ) ) = ( n + ( 2 + 1 ) ) ) | 
						
							| 36 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 37 | 36 | oveq2i |  |-  ( n + ( 2 + 1 ) ) = ( n + 3 ) | 
						
							| 38 | 35 37 | eqtrdi |  |-  ( n e. NN0 -> ( 2 + ( n + 1 ) ) = ( n + 3 ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( n e. NN0 -> ( 2 ^ ( 2 + ( n + 1 ) ) ) = ( 2 ^ ( n + 3 ) ) ) | 
						
							| 40 | 29 32 39 | 3eqtr2d |  |-  ( n e. NN0 -> ( 4 x. ( 2 ^ ( n + 1 ) ) ) = ( 2 ^ ( n + 3 ) ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( n e. NN0 -> ( ( 4 x. ( 2 ^ ( n + 1 ) ) ) - 3 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) | 
						
							| 42 | 11 25 41 | 3eqtrd |  |-  ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) | 
						
							| 43 | 42 | mpteq2ia |  |-  ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) | 
						
							| 44 | 2 5 43 | 3eqtri |  |-  ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |