| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 2 | 1 | fveq2i | ⊢ ( Ack ‘ 3 )  =  ( Ack ‘ ( 2  +  1 ) ) | 
						
							| 3 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 4 |  | ackvalsuc1mpt | ⊢ ( 2  ∈  ℕ0  →  ( Ack ‘ ( 2  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( Ack ‘ ( 2  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) | 
						
							| 6 |  | peano2nn0 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℕ0 ) | 
						
							| 7 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 8 |  | ackval2 | ⊢ ( Ack ‘ 2 )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( 2  ·  𝑖 )  +  3 ) ) | 
						
							| 9 | 8 | itcovalt2 | ⊢ ( ( ( 𝑛  +  1 )  ∈  ℕ0  ∧  3  ∈  ℕ0 )  →  ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛  +  1 ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  3 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 ) ) ) | 
						
							| 10 | 6 7 9 | sylancl | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛  +  1 ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  3 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 ) ) ) | 
						
							| 11 | 10 | fveq1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  3 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 ) ) ‘ 1 ) ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  3 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  3 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 ) ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑖  =  1  →  ( 𝑖  +  3 )  =  ( 1  +  3 ) ) | 
						
							| 14 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 15 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 16 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 17 | 14 15 16 | addcomli | ⊢ ( 1  +  3 )  =  4 | 
						
							| 18 | 13 17 | eqtrdi | ⊢ ( 𝑖  =  1  →  ( 𝑖  +  3 )  =  4 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑖  =  1  →  ( ( 𝑖  +  3 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  =  ( 4  ·  ( 2 ↑ ( 𝑛  +  1 ) ) ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑖  =  1  →  ( ( ( 𝑖  +  3 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 )  =  ( ( 4  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑖  =  1 )  →  ( ( ( 𝑖  +  3 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 )  =  ( ( 4  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 ) ) | 
						
							| 22 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 23 | 22 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  1  ∈  ℕ0 ) | 
						
							| 24 |  | ovexd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 4  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 )  ∈  V ) | 
						
							| 25 | 12 21 23 24 | fvmptd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑖  +  3 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 ) ) ‘ 1 )  =  ( ( 4  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 ) ) | 
						
							| 26 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 27 | 26 | eqcomi | ⊢ 4  =  ( 2 ↑ 2 ) | 
						
							| 28 | 27 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  4  =  ( 2 ↑ 2 ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( 4  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  =  ( ( 2 ↑ 2 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) ) ) | 
						
							| 30 |  | 2cnd | ⊢ ( 𝑛  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 31 | 3 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 32 | 30 6 31 | expaddd | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2 ↑ ( 2  +  ( 𝑛  +  1 ) ) )  =  ( ( 2 ↑ 2 )  ·  ( 2 ↑ ( 𝑛  +  1 ) ) ) ) | 
						
							| 33 |  | nn0cn | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℂ ) | 
						
							| 34 |  | 1cnd | ⊢ ( 𝑛  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 35 | 30 33 34 | add12d | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  +  ( 𝑛  +  1 ) )  =  ( 𝑛  +  ( 2  +  1 ) ) ) | 
						
							| 36 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 37 | 36 | oveq2i | ⊢ ( 𝑛  +  ( 2  +  1 ) )  =  ( 𝑛  +  3 ) | 
						
							| 38 | 35 37 | eqtrdi | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  +  ( 𝑛  +  1 ) )  =  ( 𝑛  +  3 ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2 ↑ ( 2  +  ( 𝑛  +  1 ) ) )  =  ( 2 ↑ ( 𝑛  +  3 ) ) ) | 
						
							| 40 | 29 32 39 | 3eqtr2d | ⊢ ( 𝑛  ∈  ℕ0  →  ( 4  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  =  ( 2 ↑ ( 𝑛  +  3 ) ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 4  ·  ( 2 ↑ ( 𝑛  +  1 ) ) )  −  3 )  =  ( ( 2 ↑ ( 𝑛  +  3 ) )  −  3 ) ) | 
						
							| 42 | 11 25 41 | 3eqtrd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 )  =  ( ( 2 ↑ ( 𝑛  +  3 ) )  −  3 ) ) | 
						
							| 43 | 42 | mpteq2ia | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ ( Ack ‘ 2 ) ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑ ( 𝑛  +  3 ) )  −  3 ) ) | 
						
							| 44 | 2 5 43 | 3eqtri | ⊢ ( Ack ‘ 3 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑ ( 𝑛  +  3 ) )  −  3 ) ) |