| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itcovalt2.f |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 𝐶 ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ 0 ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 0 ) ) |
| 4 |
3
|
oveq2d |
⊢ ( 𝑥 = 0 → ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) = ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) |
| 6 |
5
|
mpteq2dv |
⊢ ( 𝑥 = 0 → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) ) |
| 7 |
2 6
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ↔ ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ) ↔ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑦 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) = ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) |
| 13 |
12
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) |
| 14 |
9 13
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ↔ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ) ↔ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 2 ↑ 𝑥 ) = ( 2 ↑ ( 𝑦 + 1 ) ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) = ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) |
| 21 |
16 20
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ↔ ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) |
| 22 |
21
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ) ↔ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑥 = 𝐼 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑥 = 𝐼 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝐼 ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑥 = 𝐼 → ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) = ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑥 = 𝐼 → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) |
| 27 |
26
|
mpteq2dv |
⊢ ( 𝑥 = 𝐼 → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) |
| 28 |
23 27
|
eqeq12d |
⊢ ( 𝑥 = 𝐼 → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ↔ ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑥 = 𝐼 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ) ↔ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) ) ) |
| 30 |
1
|
itcovalt2lem1 |
⊢ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) ) |
| 31 |
|
pm2.27 |
⊢ ( 𝐶 ∈ ℕ0 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) |
| 33 |
1
|
itcovalt2lem2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) |
| 34 |
32 33
|
syld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) |
| 35 |
34
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝐶 ∈ ℕ0 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) ) |
| 36 |
35
|
com23 |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) ) |
| 37 |
8 15 22 29 30 36
|
nn0ind |
⊢ ( 𝐼 ∈ ℕ0 → ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) ) |
| 38 |
37
|
imp |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) |