| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itcovalt2.f |
|- F = ( n e. NN0 |-> ( ( 2 x. n ) + C ) ) |
| 2 |
|
fveq2 |
|- ( x = 0 -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` 0 ) ) |
| 3 |
|
oveq2 |
|- ( x = 0 -> ( 2 ^ x ) = ( 2 ^ 0 ) ) |
| 4 |
3
|
oveq2d |
|- ( x = 0 -> ( ( n + C ) x. ( 2 ^ x ) ) = ( ( n + C ) x. ( 2 ^ 0 ) ) ) |
| 5 |
4
|
oveq1d |
|- ( x = 0 -> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) = ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) |
| 6 |
5
|
mpteq2dv |
|- ( x = 0 -> ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) |
| 7 |
2 6
|
eqeq12d |
|- ( x = 0 -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) <-> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) ) |
| 8 |
7
|
imbi2d |
|- ( x = 0 -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) ) <-> ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) ) ) |
| 9 |
|
fveq2 |
|- ( x = y -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` y ) ) |
| 10 |
|
oveq2 |
|- ( x = y -> ( 2 ^ x ) = ( 2 ^ y ) ) |
| 11 |
10
|
oveq2d |
|- ( x = y -> ( ( n + C ) x. ( 2 ^ x ) ) = ( ( n + C ) x. ( 2 ^ y ) ) ) |
| 12 |
11
|
oveq1d |
|- ( x = y -> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) = ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) |
| 13 |
12
|
mpteq2dv |
|- ( x = y -> ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) |
| 14 |
9 13
|
eqeq12d |
|- ( x = y -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) <-> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) |
| 15 |
14
|
imbi2d |
|- ( x = y -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) ) <-> ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) ) |
| 16 |
|
fveq2 |
|- ( x = ( y + 1 ) -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` ( y + 1 ) ) ) |
| 17 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( y + 1 ) ) ) |
| 18 |
17
|
oveq2d |
|- ( x = ( y + 1 ) -> ( ( n + C ) x. ( 2 ^ x ) ) = ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) ) |
| 19 |
18
|
oveq1d |
|- ( x = ( y + 1 ) -> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) = ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) |
| 20 |
19
|
mpteq2dv |
|- ( x = ( y + 1 ) -> ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) |
| 21 |
16 20
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) <-> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) |
| 22 |
21
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) ) <-> ( C e. NN0 -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) ) |
| 23 |
|
fveq2 |
|- ( x = I -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` I ) ) |
| 24 |
|
oveq2 |
|- ( x = I -> ( 2 ^ x ) = ( 2 ^ I ) ) |
| 25 |
24
|
oveq2d |
|- ( x = I -> ( ( n + C ) x. ( 2 ^ x ) ) = ( ( n + C ) x. ( 2 ^ I ) ) ) |
| 26 |
25
|
oveq1d |
|- ( x = I -> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) = ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) |
| 27 |
26
|
mpteq2dv |
|- ( x = I -> ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) |
| 28 |
23 27
|
eqeq12d |
|- ( x = I -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) <-> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) ) |
| 29 |
28
|
imbi2d |
|- ( x = I -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ x ) ) - C ) ) ) <-> ( C e. NN0 -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) ) ) |
| 30 |
1
|
itcovalt2lem1 |
|- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) |
| 31 |
|
pm2.27 |
|- ( C e. NN0 -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) |
| 32 |
31
|
adantl |
|- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) |
| 33 |
1
|
itcovalt2lem2 |
|- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) |
| 34 |
32 33
|
syld |
|- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) |
| 35 |
34
|
ex |
|- ( y e. NN0 -> ( C e. NN0 -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) ) |
| 36 |
35
|
com23 |
|- ( y e. NN0 -> ( ( C e. NN0 -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( C e. NN0 -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) ) |
| 37 |
8 15 22 29 30 36
|
nn0ind |
|- ( I e. NN0 -> ( C e. NN0 -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) ) |
| 38 |
37
|
imp |
|- ( ( I e. NN0 /\ C e. NN0 ) -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ I ) ) - C ) ) ) |