| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3 |
|
| 2 |
1
|
fveq2i |
|
| 3 |
|
2nn0 |
|
| 4 |
|
ackvalsuc1mpt |
|
| 5 |
3 4
|
ax-mp |
|
| 6 |
|
peano2nn0 |
|
| 7 |
|
3nn0 |
|
| 8 |
|
ackval2 |
|
| 9 |
8
|
itcovalt2 |
|
| 10 |
6 7 9
|
sylancl |
|
| 11 |
10
|
fveq1d |
|
| 12 |
|
eqidd |
|
| 13 |
|
oveq1 |
|
| 14 |
|
3cn |
|
| 15 |
|
ax-1cn |
|
| 16 |
|
3p1e4 |
|
| 17 |
14 15 16
|
addcomli |
|
| 18 |
13 17
|
eqtrdi |
|
| 19 |
18
|
oveq1d |
|
| 20 |
19
|
oveq1d |
|
| 21 |
20
|
adantl |
|
| 22 |
|
1nn0 |
|
| 23 |
22
|
a1i |
|
| 24 |
|
ovexd |
|
| 25 |
12 21 23 24
|
fvmptd |
|
| 26 |
|
sq2 |
|
| 27 |
26
|
eqcomi |
|
| 28 |
27
|
a1i |
|
| 29 |
28
|
oveq1d |
|
| 30 |
|
2cnd |
|
| 31 |
3
|
a1i |
|
| 32 |
30 6 31
|
expaddd |
|
| 33 |
|
nn0cn |
|
| 34 |
|
1cnd |
|
| 35 |
30 33 34
|
add12d |
|
| 36 |
|
2p1e3 |
|
| 37 |
36
|
oveq2i |
|
| 38 |
35 37
|
eqtrdi |
|
| 39 |
38
|
oveq2d |
|
| 40 |
29 32 39
|
3eqtr2d |
|
| 41 |
40
|
oveq1d |
|
| 42 |
11 25 41
|
3eqtrd |
|
| 43 |
42
|
mpteq2ia |
|
| 44 |
2 5 43
|
3eqtri |
|