| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( x = 0 -> ( Ack ` x ) = ( Ack ` 0 ) ) |
| 2 |
1
|
feq1d |
|- ( x = 0 -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` 0 ) : NN0 --> NN0 ) ) |
| 3 |
|
fveq2 |
|- ( x = y -> ( Ack ` x ) = ( Ack ` y ) ) |
| 4 |
3
|
feq1d |
|- ( x = y -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` y ) : NN0 --> NN0 ) ) |
| 5 |
|
fveq2 |
|- ( x = ( y + 1 ) -> ( Ack ` x ) = ( Ack ` ( y + 1 ) ) ) |
| 6 |
5
|
feq1d |
|- ( x = ( y + 1 ) -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` ( y + 1 ) ) : NN0 --> NN0 ) ) |
| 7 |
|
fveq2 |
|- ( x = M -> ( Ack ` x ) = ( Ack ` M ) ) |
| 8 |
7
|
feq1d |
|- ( x = M -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` M ) : NN0 --> NN0 ) ) |
| 9 |
|
ackval0 |
|- ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) |
| 10 |
|
peano2nn0 |
|- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
| 11 |
9 10
|
fmpti |
|- ( Ack ` 0 ) : NN0 --> NN0 |
| 12 |
|
nn0ex |
|- NN0 e. _V |
| 13 |
12
|
a1i |
|- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> NN0 e. _V ) |
| 14 |
|
simplr |
|- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( Ack ` y ) : NN0 --> NN0 ) |
| 15 |
10
|
adantl |
|- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( n + 1 ) e. NN0 ) |
| 16 |
13 14 15
|
itcovalendof |
|- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) : NN0 --> NN0 ) |
| 17 |
|
1nn0 |
|- 1 e. NN0 |
| 18 |
|
ffvelcdm |
|- ( ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) : NN0 --> NN0 /\ 1 e. NN0 ) -> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) e. NN0 ) |
| 19 |
16 17 18
|
sylancl |
|- ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) e. NN0 ) |
| 20 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) |
| 21 |
19 20
|
fmptd |
|- ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) : NN0 --> NN0 ) |
| 22 |
|
ackvalsuc1mpt |
|- ( y e. NN0 -> ( Ack ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
| 23 |
22
|
adantr |
|- ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( Ack ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
| 24 |
23
|
feq1d |
|- ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( ( Ack ` ( y + 1 ) ) : NN0 --> NN0 <-> ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) : NN0 --> NN0 ) ) |
| 25 |
21 24
|
mpbird |
|- ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( Ack ` ( y + 1 ) ) : NN0 --> NN0 ) |
| 26 |
25
|
ex |
|- ( y e. NN0 -> ( ( Ack ` y ) : NN0 --> NN0 -> ( Ack ` ( y + 1 ) ) : NN0 --> NN0 ) ) |
| 27 |
2 4 6 8 11 26
|
nn0ind |
|- ( M e. NN0 -> ( Ack ` M ) : NN0 --> NN0 ) |