| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( x = 0 -> ( Ack ` x ) = ( Ack ` 0 ) ) | 
						
							| 2 | 1 | feq1d |  |-  ( x = 0 -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` 0 ) : NN0 --> NN0 ) ) | 
						
							| 3 |  | fveq2 |  |-  ( x = y -> ( Ack ` x ) = ( Ack ` y ) ) | 
						
							| 4 | 3 | feq1d |  |-  ( x = y -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` y ) : NN0 --> NN0 ) ) | 
						
							| 5 |  | fveq2 |  |-  ( x = ( y + 1 ) -> ( Ack ` x ) = ( Ack ` ( y + 1 ) ) ) | 
						
							| 6 | 5 | feq1d |  |-  ( x = ( y + 1 ) -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` ( y + 1 ) ) : NN0 --> NN0 ) ) | 
						
							| 7 |  | fveq2 |  |-  ( x = M -> ( Ack ` x ) = ( Ack ` M ) ) | 
						
							| 8 | 7 | feq1d |  |-  ( x = M -> ( ( Ack ` x ) : NN0 --> NN0 <-> ( Ack ` M ) : NN0 --> NN0 ) ) | 
						
							| 9 |  | ackval0 |  |-  ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) | 
						
							| 10 |  | peano2nn0 |  |-  ( n e. NN0 -> ( n + 1 ) e. NN0 ) | 
						
							| 11 | 9 10 | fmpti |  |-  ( Ack ` 0 ) : NN0 --> NN0 | 
						
							| 12 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> NN0 e. _V ) | 
						
							| 14 |  | simplr |  |-  ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( Ack ` y ) : NN0 --> NN0 ) | 
						
							| 15 | 10 | adantl |  |-  ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( n + 1 ) e. NN0 ) | 
						
							| 16 | 13 14 15 | itcovalendof |  |-  ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) : NN0 --> NN0 ) | 
						
							| 17 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 18 |  | ffvelcdm |  |-  ( ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) : NN0 --> NN0 /\ 1 e. NN0 ) -> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) e. NN0 ) | 
						
							| 19 | 16 17 18 | sylancl |  |-  ( ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) /\ n e. NN0 ) -> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) e. NN0 ) | 
						
							| 20 |  | eqid |  |-  ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) | 
						
							| 21 | 19 20 | fmptd |  |-  ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) : NN0 --> NN0 ) | 
						
							| 22 |  | ackvalsuc1mpt |  |-  ( y e. NN0 -> ( Ack ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( Ack ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) ) | 
						
							| 24 | 23 | feq1d |  |-  ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( ( Ack ` ( y + 1 ) ) : NN0 --> NN0 <-> ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` y ) ) ` ( n + 1 ) ) ` 1 ) ) : NN0 --> NN0 ) ) | 
						
							| 25 | 21 24 | mpbird |  |-  ( ( y e. NN0 /\ ( Ack ` y ) : NN0 --> NN0 ) -> ( Ack ` ( y + 1 ) ) : NN0 --> NN0 ) | 
						
							| 26 | 25 | ex |  |-  ( y e. NN0 -> ( ( Ack ` y ) : NN0 --> NN0 -> ( Ack ` ( y + 1 ) ) : NN0 --> NN0 ) ) | 
						
							| 27 | 2 4 6 8 11 26 | nn0ind |  |-  ( M e. NN0 -> ( Ack ` M ) : NN0 --> NN0 ) |