| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itcovalendof.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | itcovalendof.f |  |-  ( ph -> F : A --> A ) | 
						
							| 3 |  | itcovalendof.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 4 |  | fveq2 |  |-  ( x = 0 -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` 0 ) ) | 
						
							| 5 | 4 | feq1d |  |-  ( x = 0 -> ( ( ( IterComp ` F ) ` x ) : A --> A <-> ( ( IterComp ` F ) ` 0 ) : A --> A ) ) | 
						
							| 6 |  | fveq2 |  |-  ( x = y -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` y ) ) | 
						
							| 7 | 6 | feq1d |  |-  ( x = y -> ( ( ( IterComp ` F ) ` x ) : A --> A <-> ( ( IterComp ` F ) ` y ) : A --> A ) ) | 
						
							| 8 |  | fveq2 |  |-  ( x = ( y + 1 ) -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` ( y + 1 ) ) ) | 
						
							| 9 | 8 | feq1d |  |-  ( x = ( y + 1 ) -> ( ( ( IterComp ` F ) ` x ) : A --> A <-> ( ( IterComp ` F ) ` ( y + 1 ) ) : A --> A ) ) | 
						
							| 10 |  | fveq2 |  |-  ( x = N -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` N ) ) | 
						
							| 11 | 10 | feq1d |  |-  ( x = N -> ( ( ( IterComp ` F ) ` x ) : A --> A <-> ( ( IterComp ` F ) ` N ) : A --> A ) ) | 
						
							| 12 |  | f1oi |  |-  ( _I |` A ) : A -1-1-onto-> A | 
						
							| 13 |  | f1of |  |-  ( ( _I |` A ) : A -1-1-onto-> A -> ( _I |` A ) : A --> A ) | 
						
							| 14 | 12 13 | mp1i |  |-  ( ph -> ( _I |` A ) : A --> A ) | 
						
							| 15 | 2 | fdmd |  |-  ( ph -> dom F = A ) | 
						
							| 16 | 15 | reseq2d |  |-  ( ph -> ( _I |` dom F ) = ( _I |` A ) ) | 
						
							| 17 | 16 | feq1d |  |-  ( ph -> ( ( _I |` dom F ) : A --> A <-> ( _I |` A ) : A --> A ) ) | 
						
							| 18 | 14 17 | mpbird |  |-  ( ph -> ( _I |` dom F ) : A --> A ) | 
						
							| 19 | 2 1 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 20 |  | itcoval0 |  |-  ( F e. _V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) | 
						
							| 22 | 21 | feq1d |  |-  ( ph -> ( ( ( IterComp ` F ) ` 0 ) : A --> A <-> ( _I |` dom F ) : A --> A ) ) | 
						
							| 23 | 18 22 | mpbird |  |-  ( ph -> ( ( IterComp ` F ) ` 0 ) : A --> A ) | 
						
							| 24 | 2 | ad2antrr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) : A --> A ) -> F : A --> A ) | 
						
							| 25 |  | simpr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) : A --> A ) -> ( ( IterComp ` F ) ` y ) : A --> A ) | 
						
							| 26 | 24 25 | fcod |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) : A --> A ) -> ( F o. ( ( IterComp ` F ) ` y ) ) : A --> A ) | 
						
							| 27 | 19 | ad2antrr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) : A --> A ) -> F e. _V ) | 
						
							| 28 |  | simplr |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) : A --> A ) -> y e. NN0 ) | 
						
							| 29 |  | eqidd |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) : A --> A ) -> ( ( IterComp ` F ) ` y ) = ( ( IterComp ` F ) ` y ) ) | 
						
							| 30 |  | itcovalsucov |  |-  ( ( F e. _V /\ y e. NN0 /\ ( ( IterComp ` F ) ` y ) = ( ( IterComp ` F ) ` y ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( ( IterComp ` F ) ` y ) ) ) | 
						
							| 31 | 27 28 29 30 | syl3anc |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) : A --> A ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( ( IterComp ` F ) ` y ) ) ) | 
						
							| 32 | 31 | feq1d |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) : A --> A ) -> ( ( ( IterComp ` F ) ` ( y + 1 ) ) : A --> A <-> ( F o. ( ( IterComp ` F ) ` y ) ) : A --> A ) ) | 
						
							| 33 | 26 32 | mpbird |  |-  ( ( ( ph /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) : A --> A ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) : A --> A ) | 
						
							| 34 | 5 7 9 11 23 33 | nn0indd |  |-  ( ( ph /\ N e. NN0 ) -> ( ( IterComp ` F ) ` N ) : A --> A ) | 
						
							| 35 | 3 34 | mpdan |  |-  ( ph -> ( ( IterComp ` F ) ` N ) : A --> A ) |