| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itcovalendof.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | itcovalendof.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐴 ) | 
						
							| 3 |  | itcovalendof.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 )  =  ( ( IterComp ‘ 𝐹 ) ‘ 0 ) ) | 
						
							| 5 | 4 | feq1d | ⊢ ( 𝑥  =  0  →  ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) : 𝐴 ⟶ 𝐴  ↔  ( ( IterComp ‘ 𝐹 ) ‘ 0 ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 )  =  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) | 
						
							| 7 | 6 | feq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) : 𝐴 ⟶ 𝐴  ↔  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 )  =  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) ) ) | 
						
							| 9 | 8 | feq1d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) : 𝐴 ⟶ 𝐴  ↔  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 )  =  ( ( IterComp ‘ 𝐹 ) ‘ 𝑁 ) ) | 
						
							| 11 | 10 | feq1d | ⊢ ( 𝑥  =  𝑁  →  ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) : 𝐴 ⟶ 𝐴  ↔  ( ( IterComp ‘ 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 12 |  | f1oi | ⊢ (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | 
						
							| 13 |  | f1of | ⊢ ( (  I   ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐴  →  (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 14 | 12 13 | mp1i | ⊢ ( 𝜑  →  (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 15 | 2 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 16 | 15 | reseq2d | ⊢ ( 𝜑  →  (  I   ↾  dom  𝐹 )  =  (  I   ↾  𝐴 ) ) | 
						
							| 17 | 16 | feq1d | ⊢ ( 𝜑  →  ( (  I   ↾  dom  𝐹 ) : 𝐴 ⟶ 𝐴  ↔  (  I   ↾  𝐴 ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 18 | 14 17 | mpbird | ⊢ ( 𝜑  →  (  I   ↾  dom  𝐹 ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 19 | 2 1 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 20 |  | itcoval0 | ⊢ ( 𝐹  ∈  V  →  ( ( IterComp ‘ 𝐹 ) ‘ 0 )  =  (  I   ↾  dom  𝐹 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  ( ( IterComp ‘ 𝐹 ) ‘ 0 )  =  (  I   ↾  dom  𝐹 ) ) | 
						
							| 22 | 21 | feq1d | ⊢ ( 𝜑  →  ( ( ( IterComp ‘ 𝐹 ) ‘ 0 ) : 𝐴 ⟶ 𝐴  ↔  (  I   ↾  dom  𝐹 ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 23 | 18 22 | mpbird | ⊢ ( 𝜑  →  ( ( IterComp ‘ 𝐹 ) ‘ 0 ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 24 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 )  →  𝐹 : 𝐴 ⟶ 𝐴 ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 )  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 26 | 24 25 | fcod | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 )  →  ( 𝐹  ∘  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 27 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 )  →  𝐹  ∈  V ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 )  →  𝑦  ∈  ℕ0 ) | 
						
							| 29 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 )  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 )  =  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) | 
						
							| 30 |  | itcovalsucov | ⊢ ( ( 𝐹  ∈  V  ∧  𝑦  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 )  =  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) )  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) )  =  ( 𝐹  ∘  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 31 | 27 28 29 30 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 )  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) )  =  ( 𝐹  ∘  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) ) | 
						
							| 32 | 31 | feq1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 )  →  ( ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) ) : 𝐴 ⟶ 𝐴  ↔  ( 𝐹  ∘  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) : 𝐴 ⟶ 𝐴 ) ) | 
						
							| 33 | 26 32 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 )  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 34 | 5 7 9 11 23 33 | nn0indd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ0 )  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ 𝐴 ) | 
						
							| 35 | 3 34 | mpdan | ⊢ ( 𝜑  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ 𝐴 ) |