Metamath Proof Explorer


Theorem itcoval0

Description: A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024)

Ref Expression
Assertion itcoval0 ( 𝐹𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( I ↾ dom 𝐹 ) )

Proof

Step Hyp Ref Expression
1 itcoval ( 𝐹𝑉 → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) )
2 1 fveq1d ( 𝐹𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 0 ) )
3 0z 0 ∈ ℤ
4 eqidd ( 𝐹𝑉 → ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) )
5 iftrue ( 𝑖 = 0 → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = ( I ↾ dom 𝐹 ) )
6 5 adantl ( ( 𝐹𝑉𝑖 = 0 ) → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = ( I ↾ dom 𝐹 ) )
7 0nn0 0 ∈ ℕ0
8 7 a1i ( 𝐹𝑉 → 0 ∈ ℕ0 )
9 dmexg ( 𝐹𝑉 → dom 𝐹 ∈ V )
10 9 resiexd ( 𝐹𝑉 → ( I ↾ dom 𝐹 ) ∈ V )
11 4 6 8 10 fvmptd ( 𝐹𝑉 → ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ‘ 0 ) = ( I ↾ dom 𝐹 ) )
12 3 11 seq1i ( 𝐹𝑉 → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 0 ) = ( I ↾ dom 𝐹 ) )
13 2 12 eqtrd ( 𝐹𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( I ↾ dom 𝐹 ) )