Metamath Proof Explorer


Theorem itcoval0

Description: A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024)

Ref Expression
Assertion itcoval0 Could not format assertion : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcoval Could not format ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) : No typesetting found for |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) with typecode |-
2 1 fveq1d Could not format ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) ) : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) ) with typecode |-
3 0z 0
4 eqidd F V i 0 if i = 0 I dom F F = i 0 if i = 0 I dom F F
5 iftrue i = 0 if i = 0 I dom F F = I dom F
6 5 adantl F V i = 0 if i = 0 I dom F F = I dom F
7 0nn0 0 0
8 7 a1i F V 0 0
9 dmexg F V dom F V
10 9 resiexd F V I dom F V
11 4 6 8 10 fvmptd F V i 0 if i = 0 I dom F F 0 = I dom F
12 3 11 seq1i F V seq 0 g V , j V F g i 0 if i = 0 I dom F F 0 = I dom F
13 2 12 eqtrd Could not format ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) with typecode |-