Metamath Proof Explorer


Theorem itcovalsucov

Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024)

Ref Expression
Assertion itcovalsucov ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐹𝐺 ) )

Proof

Step Hyp Ref Expression
1 itcovalsuc ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐺 ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹𝑔 ) ) 𝐹 ) )
2 eqidd ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹𝑔 ) ) = ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹𝑔 ) ) )
3 coeq2 ( 𝑔 = 𝐺 → ( 𝐹𝑔 ) = ( 𝐹𝐺 ) )
4 3 ad2antrl ( ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) ∧ ( 𝑔 = 𝐺𝑗 = 𝐹 ) ) → ( 𝐹𝑔 ) = ( 𝐹𝐺 ) )
5 id ( 𝐺 = ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) → 𝐺 = ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) )
6 fvex ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) ∈ V
7 5 6 eqeltrdi ( 𝐺 = ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) → 𝐺 ∈ V )
8 7 eqcoms ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺𝐺 ∈ V )
9 8 3ad2ant3 ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → 𝐺 ∈ V )
10 elex ( 𝐹𝑉𝐹 ∈ V )
11 10 3ad2ant1 ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → 𝐹 ∈ V )
12 8 anim2i ( ( 𝐹𝑉 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐹𝑉𝐺 ∈ V ) )
13 12 3adant2 ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐹𝑉𝐺 ∈ V ) )
14 coexg ( ( 𝐹𝑉𝐺 ∈ V ) → ( 𝐹𝐺 ) ∈ V )
15 13 14 syl ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐹𝐺 ) ∈ V )
16 2 4 9 11 15 ovmpod ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐺 ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹𝑔 ) ) 𝐹 ) = ( 𝐹𝐺 ) )
17 1 16 eqtrd ( ( 𝐹𝑉𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐹𝐺 ) )