| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  𝐹  ∈  𝑉 ) | 
						
							| 2 |  | itcoval | ⊢ ( 𝐹  ∈  𝑉  →  ( IterComp ‘ 𝐹 )  =  seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ) | 
						
							| 3 | 2 | fveq1d | ⊢ ( 𝐹  ∈  𝑉  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌  +  1 ) )  =  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ ( 𝑌  +  1 ) ) ) | 
						
							| 4 | 1 3 | syl | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌  +  1 ) )  =  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ ( 𝑌  +  1 ) ) ) | 
						
							| 5 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  𝑌  ∈  ℕ0 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑌  +  1 )  =  ( 𝑌  +  1 ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0 )  →  ( IterComp ‘ 𝐹 )  =  seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0 )  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ 𝑌 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0 )  →  ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺  ↔  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ 𝑌 )  =  𝐺 ) ) | 
						
							| 11 | 10 | biimp3a | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ 𝑌 )  =  𝐺 ) | 
						
							| 12 |  | eqidd | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) | 
						
							| 13 |  | nn0p1gt0 | ⊢ ( 𝑌  ∈  ℕ0  →  0  <  ( 𝑌  +  1 ) ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  0  <  ( 𝑌  +  1 ) ) | 
						
							| 15 | 14 | gt0ne0d | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  ( 𝑌  +  1 )  ≠  0 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  ∧  𝑖  =  ( 𝑌  +  1 ) )  →  ( 𝑌  +  1 )  ≠  0 ) | 
						
							| 17 |  | neeq1 | ⊢ ( 𝑖  =  ( 𝑌  +  1 )  →  ( 𝑖  ≠  0  ↔  ( 𝑌  +  1 )  ≠  0 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  ∧  𝑖  =  ( 𝑌  +  1 ) )  →  ( 𝑖  ≠  0  ↔  ( 𝑌  +  1 )  ≠  0 ) ) | 
						
							| 19 | 16 18 | mpbird | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  ∧  𝑖  =  ( 𝑌  +  1 ) )  →  𝑖  ≠  0 ) | 
						
							| 20 | 19 | neneqd | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  ∧  𝑖  =  ( 𝑌  +  1 ) )  →  ¬  𝑖  =  0 ) | 
						
							| 21 | 20 | iffalsed | ⊢ ( ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  ∧  𝑖  =  ( 𝑌  +  1 ) )  →  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 22 |  | peano2nn0 | ⊢ ( 𝑌  ∈  ℕ0  →  ( 𝑌  +  1 )  ∈  ℕ0 ) | 
						
							| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  ( 𝑌  +  1 )  ∈  ℕ0 ) | 
						
							| 24 | 12 21 23 1 | fvmptd | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ‘ ( 𝑌  +  1 ) )  =  𝐹 ) | 
						
							| 25 | 5 6 7 11 24 | seqp1d | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ ( 𝑌  +  1 ) )  =  ( 𝐺 ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) 𝐹 ) ) | 
						
							| 26 | 4 25 | eqtrd | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑌  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 )  =  𝐺 )  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌  +  1 ) )  =  ( 𝐺 ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) 𝐹 ) ) |