| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-4 | ⊢ 4  =  ( 3  +  1 ) | 
						
							| 2 | 1 | fveq2i | ⊢ ( Ack ‘ 4 )  =  ( Ack ‘ ( 3  +  1 ) ) | 
						
							| 3 | 2 | fveq1i | ⊢ ( ( Ack ‘ 4 ) ‘ 0 )  =  ( ( Ack ‘ ( 3  +  1 ) ) ‘ 0 ) | 
						
							| 4 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 5 |  | ackvalsuc0val | ⊢ ( 3  ∈  ℕ0  →  ( ( Ack ‘ ( 3  +  1 ) ) ‘ 0 )  =  ( ( Ack ‘ 3 ) ‘ 1 ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( ( Ack ‘ ( 3  +  1 ) ) ‘ 0 )  =  ( ( Ack ‘ 3 ) ‘ 1 ) | 
						
							| 7 |  | ackval3012 | ⊢ 〈 ( ( Ack ‘ 3 ) ‘ 0 ) ,  ( ( Ack ‘ 3 ) ‘ 1 ) ,  ( ( Ack ‘ 3 ) ‘ 2 ) 〉  =  〈 5 ,  ; 1 3 ,  ; 2 9 〉 | 
						
							| 8 |  | fvex | ⊢ ( ( Ack ‘ 3 ) ‘ 0 )  ∈  V | 
						
							| 9 |  | fvex | ⊢ ( ( Ack ‘ 3 ) ‘ 1 )  ∈  V | 
						
							| 10 |  | fvex | ⊢ ( ( Ack ‘ 3 ) ‘ 2 )  ∈  V | 
						
							| 11 | 8 9 10 | otth | ⊢ ( 〈 ( ( Ack ‘ 3 ) ‘ 0 ) ,  ( ( Ack ‘ 3 ) ‘ 1 ) ,  ( ( Ack ‘ 3 ) ‘ 2 ) 〉  =  〈 5 ,  ; 1 3 ,  ; 2 9 〉  ↔  ( ( ( Ack ‘ 3 ) ‘ 0 )  =  5  ∧  ( ( Ack ‘ 3 ) ‘ 1 )  =  ; 1 3  ∧  ( ( Ack ‘ 3 ) ‘ 2 )  =  ; 2 9 ) ) | 
						
							| 12 | 11 | simp2bi | ⊢ ( 〈 ( ( Ack ‘ 3 ) ‘ 0 ) ,  ( ( Ack ‘ 3 ) ‘ 1 ) ,  ( ( Ack ‘ 3 ) ‘ 2 ) 〉  =  〈 5 ,  ; 1 3 ,  ; 2 9 〉  →  ( ( Ack ‘ 3 ) ‘ 1 )  =  ; 1 3 ) | 
						
							| 13 | 7 12 | ax-mp | ⊢ ( ( Ack ‘ 3 ) ‘ 1 )  =  ; 1 3 | 
						
							| 14 | 3 6 13 | 3eqtri | ⊢ ( ( Ack ‘ 4 ) ‘ 0 )  =  ; 1 3 |