| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-4 | ⊢ 4  =  ( 3  +  1 ) | 
						
							| 2 | 1 | fveq2i | ⊢ ( Ack ‘ 4 )  =  ( Ack ‘ ( 3  +  1 ) ) | 
						
							| 3 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 4 | 2 3 | fveq12i | ⊢ ( ( Ack ‘ 4 ) ‘ 1 )  =  ( ( Ack ‘ ( 3  +  1 ) ) ‘ ( 0  +  1 ) ) | 
						
							| 5 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 6 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 7 |  | ackvalsucsucval | ⊢ ( ( 3  ∈  ℕ0  ∧  0  ∈  ℕ0 )  →  ( ( Ack ‘ ( 3  +  1 ) ) ‘ ( 0  +  1 ) )  =  ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3  +  1 ) ) ‘ 0 ) ) ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ ( ( Ack ‘ ( 3  +  1 ) ) ‘ ( 0  +  1 ) )  =  ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3  +  1 ) ) ‘ 0 ) ) | 
						
							| 9 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 10 | 9 | fveq2i | ⊢ ( Ack ‘ ( 3  +  1 ) )  =  ( Ack ‘ 4 ) | 
						
							| 11 | 10 | fveq1i | ⊢ ( ( Ack ‘ ( 3  +  1 ) ) ‘ 0 )  =  ( ( Ack ‘ 4 ) ‘ 0 ) | 
						
							| 12 |  | ackval40 | ⊢ ( ( Ack ‘ 4 ) ‘ 0 )  =  ; 1 3 | 
						
							| 13 | 11 12 | eqtri | ⊢ ( ( Ack ‘ ( 3  +  1 ) ) ‘ 0 )  =  ; 1 3 | 
						
							| 14 | 13 | fveq2i | ⊢ ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3  +  1 ) ) ‘ 0 ) )  =  ( ( Ack ‘ 3 ) ‘ ; 1 3 ) | 
						
							| 15 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 16 | 15 5 | deccl | ⊢ ; 1 3  ∈  ℕ0 | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑛  =  ; 1 3  →  ( 𝑛  +  3 )  =  ( ; 1 3  +  3 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑛  =  ; 1 3  →  ( 2 ↑ ( 𝑛  +  3 ) )  =  ( 2 ↑ ( ; 1 3  +  3 ) ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑛  =  ; 1 3  →  ( ( 2 ↑ ( 𝑛  +  3 ) )  −  3 )  =  ( ( 2 ↑ ( ; 1 3  +  3 ) )  −  3 ) ) | 
						
							| 20 |  | eqid | ⊢ ; 1 3  =  ; 1 3 | 
						
							| 21 |  | 3p3e6 | ⊢ ( 3  +  3 )  =  6 | 
						
							| 22 | 15 5 5 20 21 | decaddi | ⊢ ( ; 1 3  +  3 )  =  ; 1 6 | 
						
							| 23 | 22 | oveq2i | ⊢ ( 2 ↑ ( ; 1 3  +  3 ) )  =  ( 2 ↑ ; 1 6 ) | 
						
							| 24 | 23 | oveq1i | ⊢ ( ( 2 ↑ ( ; 1 3  +  3 ) )  −  3 )  =  ( ( 2 ↑ ; 1 6 )  −  3 ) | 
						
							| 25 | 19 24 | eqtrdi | ⊢ ( 𝑛  =  ; 1 3  →  ( ( 2 ↑ ( 𝑛  +  3 ) )  −  3 )  =  ( ( 2 ↑ ; 1 6 )  −  3 ) ) | 
						
							| 26 |  | ackval3 | ⊢ ( Ack ‘ 3 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑ ( 𝑛  +  3 ) )  −  3 ) ) | 
						
							| 27 |  | ovex | ⊢ ( ( 2 ↑ ; 1 6 )  −  3 )  ∈  V | 
						
							| 28 | 25 26 27 | fvmpt | ⊢ ( ; 1 3  ∈  ℕ0  →  ( ( Ack ‘ 3 ) ‘ ; 1 3 )  =  ( ( 2 ↑ ; 1 6 )  −  3 ) ) | 
						
							| 29 | 16 28 | ax-mp | ⊢ ( ( Ack ‘ 3 ) ‘ ; 1 3 )  =  ( ( 2 ↑ ; 1 6 )  −  3 ) | 
						
							| 30 | 14 29 | eqtri | ⊢ ( ( Ack ‘ 3 ) ‘ ( ( Ack ‘ ( 3  +  1 ) ) ‘ 0 ) )  =  ( ( 2 ↑ ; 1 6 )  −  3 ) | 
						
							| 31 | 8 30 | eqtri | ⊢ ( ( Ack ‘ ( 3  +  1 ) ) ‘ ( 0  +  1 ) )  =  ( ( 2 ↑ ; 1 6 )  −  3 ) | 
						
							| 32 | 4 31 | eqtri | ⊢ ( ( Ack ‘ 4 ) ‘ 1 )  =  ( ( 2 ↑ ; 1 6 )  −  3 ) |