| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 2 |  | ackvalsuc1 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ( 𝑁  +  1 )  ∈  ℕ0 )  →  ( ( Ack ‘ ( 𝑀  +  1 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁  +  1 )  +  1 ) ) ‘ 1 ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( Ack ‘ ( 𝑀  +  1 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁  +  1 )  +  1 ) ) ‘ 1 ) ) | 
						
							| 4 |  | fvexd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( Ack ‘ 𝑀 )  ∈  V ) | 
						
							| 5 | 1 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 6 |  | eqidd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 7 |  | itcovalsucov | ⊢ ( ( ( Ack ‘ 𝑀 )  ∈  V  ∧  ( 𝑁  +  1 )  ∈  ℕ0  ∧  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) )  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁  +  1 )  +  1 ) )  =  ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁  +  1 )  +  1 ) )  =  ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁  +  1 )  +  1 ) ) ‘ 1 )  =  ( ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ) ‘ 1 ) ) | 
						
							| 10 |  | ackfnnn0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( Ack ‘ 𝑀 )  Fn  ℕ0 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( Ack ‘ 𝑀 )  Fn  ℕ0 ) | 
						
							| 12 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ℕ0  ∈  V ) | 
						
							| 14 |  | ackendofnn0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( Ack ‘ 𝑀 ) : ℕ0 ⟶ ℕ0 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( Ack ‘ 𝑀 ) : ℕ0 ⟶ ℕ0 ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 17 | 13 15 16 | itcovalendof | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) : ℕ0 ⟶ ℕ0 ) | 
						
							| 18 | 17 | ffnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 )  Fn  ℕ0 ) | 
						
							| 19 | 17 | frnd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ran  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 )  ⊆  ℕ0 ) | 
						
							| 20 |  | fnco | ⊢ ( ( ( Ack ‘ 𝑀 )  Fn  ℕ0  ∧  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 )  Fn  ℕ0  ∧  ran  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 )  ⊆  ℕ0 )  →  ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) )  Fn  ℕ0 ) | 
						
							| 21 | 11 18 19 20 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) )  Fn  ℕ0 ) | 
						
							| 22 |  | eqidd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 )  =  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) | 
						
							| 23 |  | itcovalsucov | ⊢ ( ( ( Ack ‘ 𝑀 )  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 )  =  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) )  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) ) | 
						
							| 24 | 4 16 22 23 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) ) ) | 
						
							| 25 | 24 | fneq1d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) )  Fn  ℕ0  ↔  ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ 𝑁 ) )  Fn  ℕ0 ) ) | 
						
							| 26 | 21 25 | mpbird | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) )  Fn  ℕ0 ) | 
						
							| 27 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 28 |  | fvco2 | ⊢ ( ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) )  Fn  ℕ0  ∧  1  ∈  ℕ0 )  →  ( ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ) ‘ 1 )  =  ( ( Ack ‘ 𝑀 ) ‘ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 29 | 26 27 28 | sylancl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( Ack ‘ 𝑀 )  ∘  ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ) ‘ 1 )  =  ( ( Ack ‘ 𝑀 ) ‘ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 30 | 9 29 | eqtrd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( ( 𝑁  +  1 )  +  1 ) ) ‘ 1 )  =  ( ( Ack ‘ 𝑀 ) ‘ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) ) ) | 
						
							| 31 |  | ackvalsuc1 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( Ack ‘ ( 𝑀  +  1 ) ) ‘ 𝑁 )  =  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) ) | 
						
							| 32 | 31 | eqcomd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 )  =  ( ( Ack ‘ ( 𝑀  +  1 ) ) ‘ 𝑁 ) ) | 
						
							| 33 | 32 | fveq2d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( Ack ‘ 𝑀 ) ‘ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁  +  1 ) ) ‘ 1 ) )  =  ( ( Ack ‘ 𝑀 ) ‘ ( ( Ack ‘ ( 𝑀  +  1 ) ) ‘ 𝑁 ) ) ) | 
						
							| 34 | 3 30 33 | 3eqtrd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( Ack ‘ ( 𝑀  +  1 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( Ack ‘ 𝑀 ) ‘ ( ( Ack ‘ ( 𝑀  +  1 ) ) ‘ 𝑁 ) ) ) |