| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 2 |  | ackvalsuc1 |  |-  ( ( M e. NN0 /\ ( N + 1 ) e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` ( N + 1 ) ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) ` 1 ) ) | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` ( N + 1 ) ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) ` 1 ) ) | 
						
							| 4 |  | fvexd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( Ack ` M ) e. _V ) | 
						
							| 5 | 1 | adantl |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( N + 1 ) e. NN0 ) | 
						
							| 6 |  | eqidd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) | 
						
							| 7 |  | itcovalsucov |  |-  ( ( ( Ack ` M ) e. _V /\ ( N + 1 ) e. NN0 /\ ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) = ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ) | 
						
							| 8 | 4 5 6 7 | syl3anc |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) = ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ) | 
						
							| 9 | 8 | fveq1d |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) ` 1 ) = ( ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ` 1 ) ) | 
						
							| 10 |  | ackfnnn0 |  |-  ( M e. NN0 -> ( Ack ` M ) Fn NN0 ) | 
						
							| 11 | 10 | adantr |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( Ack ` M ) Fn NN0 ) | 
						
							| 12 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> NN0 e. _V ) | 
						
							| 14 |  | ackendofnn0 |  |-  ( M e. NN0 -> ( Ack ` M ) : NN0 --> NN0 ) | 
						
							| 15 | 14 | adantr |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( Ack ` M ) : NN0 --> NN0 ) | 
						
							| 16 |  | simpr |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 17 | 13 15 16 | itcovalendof |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` N ) : NN0 --> NN0 ) | 
						
							| 18 | 17 | ffnd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` N ) Fn NN0 ) | 
						
							| 19 | 17 | frnd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ran ( ( IterComp ` ( Ack ` M ) ) ` N ) C_ NN0 ) | 
						
							| 20 |  | fnco |  |-  ( ( ( Ack ` M ) Fn NN0 /\ ( ( IterComp ` ( Ack ` M ) ) ` N ) Fn NN0 /\ ran ( ( IterComp ` ( Ack ` M ) ) ` N ) C_ NN0 ) -> ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) Fn NN0 ) | 
						
							| 21 | 11 18 19 20 | syl3anc |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) Fn NN0 ) | 
						
							| 22 |  | eqidd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` N ) = ( ( IterComp ` ( Ack ` M ) ) ` N ) ) | 
						
							| 23 |  | itcovalsucov |  |-  ( ( ( Ack ` M ) e. _V /\ N e. NN0 /\ ( ( IterComp ` ( Ack ` M ) ) ` N ) = ( ( IterComp ` ( Ack ` M ) ) ` N ) ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) = ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) ) | 
						
							| 24 | 4 16 22 23 | syl3anc |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) = ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) ) | 
						
							| 25 | 24 | fneq1d |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) Fn NN0 <-> ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` N ) ) Fn NN0 ) ) | 
						
							| 26 | 21 25 | mpbird |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) Fn NN0 ) | 
						
							| 27 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 28 |  | fvco2 |  |-  ( ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) Fn NN0 /\ 1 e. NN0 ) -> ( ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ` 1 ) = ( ( Ack ` M ) ` ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) ) | 
						
							| 29 | 26 27 28 | sylancl |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( Ack ` M ) o. ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ) ` 1 ) = ( ( Ack ` M ) ` ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) ) | 
						
							| 30 | 9 29 | eqtrd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( ( N + 1 ) + 1 ) ) ` 1 ) = ( ( Ack ` M ) ` ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) ) | 
						
							| 31 |  | ackvalsuc1 |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` N ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) | 
						
							| 32 | 31 | eqcomd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) = ( ( Ack ` ( M + 1 ) ) ` N ) ) | 
						
							| 33 | 32 | fveq2d |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` M ) ` ( ( ( IterComp ` ( Ack ` M ) ) ` ( N + 1 ) ) ` 1 ) ) = ( ( Ack ` M ) ` ( ( Ack ` ( M + 1 ) ) ` N ) ) ) | 
						
							| 34 | 3 30 33 | 3eqtrd |  |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` ( N + 1 ) ) = ( ( Ack ` M ) ` ( ( Ack ` ( M + 1 ) ) ` N ) ) ) |