| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackval0 |  |-  ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) | 
						
							| 2 |  | oveq1 |  |-  ( n = 0 -> ( n + 1 ) = ( 0 + 1 ) ) | 
						
							| 3 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 4 | 2 3 | eqtrdi |  |-  ( n = 0 -> ( n + 1 ) = 1 ) | 
						
							| 5 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 6 | 5 | a1i |  |-  ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> 0 e. NN0 ) | 
						
							| 7 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 8 | 7 | a1i |  |-  ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> 1 e. NN0 ) | 
						
							| 9 | 1 4 6 8 | fvmptd3 |  |-  ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> ( ( Ack ` 0 ) ` 0 ) = 1 ) | 
						
							| 10 |  | oveq1 |  |-  ( n = 1 -> ( n + 1 ) = ( 1 + 1 ) ) | 
						
							| 11 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 12 | 10 11 | eqtrdi |  |-  ( n = 1 -> ( n + 1 ) = 2 ) | 
						
							| 13 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 14 | 13 | a1i |  |-  ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> 2 e. NN0 ) | 
						
							| 15 | 1 12 8 14 | fvmptd3 |  |-  ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> ( ( Ack ` 0 ) ` 1 ) = 2 ) | 
						
							| 16 |  | oveq1 |  |-  ( n = 2 -> ( n + 1 ) = ( 2 + 1 ) ) | 
						
							| 17 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 18 | 16 17 | eqtrdi |  |-  ( n = 2 -> ( n + 1 ) = 3 ) | 
						
							| 19 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 20 | 19 | a1i |  |-  ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> 3 e. NN0 ) | 
						
							| 21 | 1 18 14 20 | fvmptd3 |  |-  ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> ( ( Ack ` 0 ) ` 2 ) = 3 ) | 
						
							| 22 | 9 15 21 | oteq123d |  |-  ( ( Ack ` 0 ) = ( n e. NN0 |-> ( n + 1 ) ) -> <. ( ( Ack ` 0 ) ` 0 ) , ( ( Ack ` 0 ) ` 1 ) , ( ( Ack ` 0 ) ` 2 ) >. = <. 1 , 2 , 3 >. ) | 
						
							| 23 | 1 22 | ax-mp |  |-  <. ( ( Ack ` 0 ) ` 0 ) , ( ( Ack ` 0 ) ` 1 ) , ( ( Ack ` 0 ) ` 2 ) >. = <. 1 , 2 , 3 >. |