| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackval1 |  |-  ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) | 
						
							| 2 |  | oveq1 |  |-  ( n = 0 -> ( n + 2 ) = ( 0 + 2 ) ) | 
						
							| 3 |  | 2cn |  |-  2 e. CC | 
						
							| 4 | 3 | addlidi |  |-  ( 0 + 2 ) = 2 | 
						
							| 5 | 2 4 | eqtrdi |  |-  ( n = 0 -> ( n + 2 ) = 2 ) | 
						
							| 6 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 7 | 6 | a1i |  |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 0 e. NN0 ) | 
						
							| 8 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 9 | 8 | a1i |  |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 2 e. NN0 ) | 
						
							| 10 | 1 5 7 9 | fvmptd3 |  |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 0 ) = 2 ) | 
						
							| 11 |  | oveq1 |  |-  ( n = 1 -> ( n + 2 ) = ( 1 + 2 ) ) | 
						
							| 12 |  | 1p2e3 |  |-  ( 1 + 2 ) = 3 | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( n = 1 -> ( n + 2 ) = 3 ) | 
						
							| 14 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 15 | 14 | a1i |  |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 1 e. NN0 ) | 
						
							| 16 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 17 | 16 | a1i |  |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 3 e. NN0 ) | 
						
							| 18 | 1 13 15 17 | fvmptd3 |  |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 1 ) = 3 ) | 
						
							| 19 |  | oveq1 |  |-  ( n = 2 -> ( n + 2 ) = ( 2 + 2 ) ) | 
						
							| 20 |  | 2p2e4 |  |-  ( 2 + 2 ) = 4 | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( n = 2 -> ( n + 2 ) = 4 ) | 
						
							| 22 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 23 | 22 | a1i |  |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 4 e. NN0 ) | 
						
							| 24 | 1 21 9 23 | fvmptd3 |  |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 2 ) = 4 ) | 
						
							| 25 | 10 18 24 | oteq123d |  |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> <. ( ( Ack ` 1 ) ` 0 ) , ( ( Ack ` 1 ) ` 1 ) , ( ( Ack ` 1 ) ` 2 ) >. = <. 2 , 3 , 4 >. ) | 
						
							| 26 | 1 25 | ax-mp |  |-  <. ( ( Ack ` 1 ) ` 0 ) , ( ( Ack ` 1 ) ` 1 ) , ( ( Ack ` 1 ) ` 2 ) >. = <. 2 , 3 , 4 >. |