| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackval1 |
|- ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) |
| 2 |
|
oveq1 |
|- ( n = 0 -> ( n + 2 ) = ( 0 + 2 ) ) |
| 3 |
|
2cn |
|- 2 e. CC |
| 4 |
3
|
addlidi |
|- ( 0 + 2 ) = 2 |
| 5 |
2 4
|
eqtrdi |
|- ( n = 0 -> ( n + 2 ) = 2 ) |
| 6 |
|
0nn0 |
|- 0 e. NN0 |
| 7 |
6
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 0 e. NN0 ) |
| 8 |
|
2nn0 |
|- 2 e. NN0 |
| 9 |
8
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 2 e. NN0 ) |
| 10 |
1 5 7 9
|
fvmptd3 |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 0 ) = 2 ) |
| 11 |
|
oveq1 |
|- ( n = 1 -> ( n + 2 ) = ( 1 + 2 ) ) |
| 12 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
| 13 |
11 12
|
eqtrdi |
|- ( n = 1 -> ( n + 2 ) = 3 ) |
| 14 |
|
1nn0 |
|- 1 e. NN0 |
| 15 |
14
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 1 e. NN0 ) |
| 16 |
|
3nn0 |
|- 3 e. NN0 |
| 17 |
16
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 3 e. NN0 ) |
| 18 |
1 13 15 17
|
fvmptd3 |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 1 ) = 3 ) |
| 19 |
|
oveq1 |
|- ( n = 2 -> ( n + 2 ) = ( 2 + 2 ) ) |
| 20 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
| 21 |
19 20
|
eqtrdi |
|- ( n = 2 -> ( n + 2 ) = 4 ) |
| 22 |
|
4nn0 |
|- 4 e. NN0 |
| 23 |
22
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 4 e. NN0 ) |
| 24 |
1 21 9 23
|
fvmptd3 |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 2 ) = 4 ) |
| 25 |
10 18 24
|
oteq123d |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> <. ( ( Ack ` 1 ) ` 0 ) , ( ( Ack ` 1 ) ` 1 ) , ( ( Ack ` 1 ) ` 2 ) >. = <. 2 , 3 , 4 >. ) |
| 26 |
1 25
|
ax-mp |
|- <. ( ( Ack ` 1 ) ` 0 ) , ( ( Ack ` 1 ) ` 1 ) , ( ( Ack ` 1 ) ` 2 ) >. = <. 2 , 3 , 4 >. |