| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackval1 | ⊢ ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑛  =  0  →  ( 𝑛  +  2 )  =  ( 0  +  2 ) ) | 
						
							| 3 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 4 | 3 | addlidi | ⊢ ( 0  +  2 )  =  2 | 
						
							| 5 | 2 4 | eqtrdi | ⊢ ( 𝑛  =  0  →  ( 𝑛  +  2 )  =  2 ) | 
						
							| 6 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 7 | 6 | a1i | ⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  0  ∈  ℕ0 ) | 
						
							| 8 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 9 | 8 | a1i | ⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  2  ∈  ℕ0 ) | 
						
							| 10 | 1 5 7 9 | fvmptd3 | ⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  ( ( Ack ‘ 1 ) ‘ 0 )  =  2 ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  +  2 )  =  ( 1  +  2 ) ) | 
						
							| 12 |  | 1p2e3 | ⊢ ( 1  +  2 )  =  3 | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝑛  =  1  →  ( 𝑛  +  2 )  =  3 ) | 
						
							| 14 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 15 | 14 | a1i | ⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  1  ∈  ℕ0 ) | 
						
							| 16 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 17 | 16 | a1i | ⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  3  ∈  ℕ0 ) | 
						
							| 18 | 1 13 15 17 | fvmptd3 | ⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  ( ( Ack ‘ 1 ) ‘ 1 )  =  3 ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑛  =  2  →  ( 𝑛  +  2 )  =  ( 2  +  2 ) ) | 
						
							| 20 |  | 2p2e4 | ⊢ ( 2  +  2 )  =  4 | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( 𝑛  =  2  →  ( 𝑛  +  2 )  =  4 ) | 
						
							| 22 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 23 | 22 | a1i | ⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  4  ∈  ℕ0 ) | 
						
							| 24 | 1 21 9 23 | fvmptd3 | ⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  ( ( Ack ‘ 1 ) ‘ 2 )  =  4 ) | 
						
							| 25 | 10 18 24 | oteq123d | ⊢ ( ( Ack ‘ 1 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  2 ) )  →  〈 ( ( Ack ‘ 1 ) ‘ 0 ) ,  ( ( Ack ‘ 1 ) ‘ 1 ) ,  ( ( Ack ‘ 1 ) ‘ 2 ) 〉  =  〈 2 ,  3 ,  4 〉 ) | 
						
							| 26 | 1 25 | ax-mp | ⊢ 〈 ( ( Ack ‘ 1 ) ‘ 0 ) ,  ( ( Ack ‘ 1 ) ‘ 1 ) ,  ( ( Ack ‘ 1 ) ‘ 2 ) 〉  =  〈 2 ,  3 ,  4 〉 |