Step |
Hyp |
Ref |
Expression |
1 |
|
ackval0 |
⊢ ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 + 1 ) = ( 0 + 1 ) ) |
3 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
4 |
2 3
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 𝑛 + 1 ) = 1 ) |
5 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
6 |
5
|
a1i |
⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 0 ∈ ℕ0 ) |
7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
8 |
7
|
a1i |
⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 1 ∈ ℕ0 ) |
9 |
1 4 6 8
|
fvmptd3 |
⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → ( ( Ack ‘ 0 ) ‘ 0 ) = 1 ) |
10 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = ( 1 + 1 ) ) |
11 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
12 |
10 11
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = 2 ) |
13 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
14 |
13
|
a1i |
⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 2 ∈ ℕ0 ) |
15 |
1 12 8 14
|
fvmptd3 |
⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → ( ( Ack ‘ 0 ) ‘ 1 ) = 2 ) |
16 |
|
oveq1 |
⊢ ( 𝑛 = 2 → ( 𝑛 + 1 ) = ( 2 + 1 ) ) |
17 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
18 |
16 17
|
eqtrdi |
⊢ ( 𝑛 = 2 → ( 𝑛 + 1 ) = 3 ) |
19 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
20 |
19
|
a1i |
⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 3 ∈ ℕ0 ) |
21 |
1 18 14 20
|
fvmptd3 |
⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → ( ( Ack ‘ 0 ) ‘ 2 ) = 3 ) |
22 |
9 15 21
|
oteq123d |
⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 〈 ( ( Ack ‘ 0 ) ‘ 0 ) , ( ( Ack ‘ 0 ) ‘ 1 ) , ( ( Ack ‘ 0 ) ‘ 2 ) 〉 = 〈 1 , 2 , 3 〉 ) |
23 |
1 22
|
ax-mp |
⊢ 〈 ( ( Ack ‘ 0 ) ‘ 0 ) , ( ( Ack ‘ 0 ) ‘ 1 ) , ( ( Ack ‘ 0 ) ‘ 2 ) 〉 = 〈 1 , 2 , 3 〉 |