| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackval0 | ⊢ ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑛  =  0  →  ( 𝑛  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 3 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 4 | 2 3 | eqtrdi | ⊢ ( 𝑛  =  0  →  ( 𝑛  +  1 )  =  1 ) | 
						
							| 5 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 6 | 5 | a1i | ⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  0  ∈  ℕ0 ) | 
						
							| 7 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 8 | 7 | a1i | ⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  1  ∈  ℕ0 ) | 
						
							| 9 | 1 4 6 8 | fvmptd3 | ⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  ( ( Ack ‘ 0 ) ‘ 0 )  =  1 ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  +  1 )  =  ( 1  +  1 ) ) | 
						
							| 11 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( 𝑛  =  1  →  ( 𝑛  +  1 )  =  2 ) | 
						
							| 13 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 14 | 13 | a1i | ⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  2  ∈  ℕ0 ) | 
						
							| 15 | 1 12 8 14 | fvmptd3 | ⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  ( ( Ack ‘ 0 ) ‘ 1 )  =  2 ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑛  =  2  →  ( 𝑛  +  1 )  =  ( 2  +  1 ) ) | 
						
							| 17 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( 𝑛  =  2  →  ( 𝑛  +  1 )  =  3 ) | 
						
							| 19 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 20 | 19 | a1i | ⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  3  ∈  ℕ0 ) | 
						
							| 21 | 1 18 14 20 | fvmptd3 | ⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  ( ( Ack ‘ 0 ) ‘ 2 )  =  3 ) | 
						
							| 22 | 9 15 21 | oteq123d | ⊢ ( ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  →  〈 ( ( Ack ‘ 0 ) ‘ 0 ) ,  ( ( Ack ‘ 0 ) ‘ 1 ) ,  ( ( Ack ‘ 0 ) ‘ 2 ) 〉  =  〈 1 ,  2 ,  3 〉 ) | 
						
							| 23 | 1 22 | ax-mp | ⊢ 〈 ( ( Ack ‘ 0 ) ‘ 0 ) ,  ( ( Ack ‘ 0 ) ‘ 1 ) ,  ( ( Ack ‘ 0 ) ‘ 2 ) 〉  =  〈 1 ,  2 ,  3 〉 |