| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackval41a | ⊢ ( ( Ack ‘ 4 ) ‘ 1 )  =  ( ( 2 ↑ ; 1 6 )  −  3 ) | 
						
							| 2 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 3 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 4 | 2 3 | deccl | ⊢ ; 6 5  ∈  ℕ0 | 
						
							| 5 | 4 3 | deccl | ⊢ ; ; 6 5 5  ∈  ℕ0 | 
						
							| 6 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 7 | 5 6 | deccl | ⊢ ; ; ; 6 5 5 3  ∈  ℕ0 | 
						
							| 8 |  | 2exp16 | ⊢ ( 2 ↑ ; 1 6 )  =  ; ; ; ; 6 5 5 3 6 | 
						
							| 9 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 10 |  | eqid | ⊢ ; ; ; 6 5 5 3  =  ; ; ; 6 5 5 3 | 
						
							| 11 | 5 6 9 10 | decsuc | ⊢ ( ; ; ; 6 5 5 3  +  1 )  =  ; ; ; 6 5 5 4 | 
						
							| 12 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 13 |  | gbpart6 | ⊢ 6  =  ( 3  +  3 ) | 
						
							| 14 | 12 12 13 | mvrraddi | ⊢ ( 6  −  3 )  =  3 | 
						
							| 15 | 7 2 6 8 11 14 | decsubi | ⊢ ( ( 2 ↑ ; 1 6 )  −  3 )  =  ; ; ; ; 6 5 5 3 3 | 
						
							| 16 | 1 15 | eqtri | ⊢ ( ( Ack ‘ 4 ) ‘ 1 )  =  ; ; ; ; 6 5 5 3 3 |