Metamath Proof Explorer
Description: The Ackermann function at (4,1). (Contributed by AV, 9-May-2024)
|
|
Ref |
Expression |
|
Assertion |
ackval41 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ackval41a |
|
2 |
|
6nn0 |
|
3 |
|
5nn0 |
|
4 |
2 3
|
deccl |
|
5 |
4 3
|
deccl |
|
6 |
|
3nn0 |
|
7 |
5 6
|
deccl |
|
8 |
|
2exp16 |
|
9 |
|
3p1e4 |
|
10 |
|
eqid |
|
11 |
5 6 9 10
|
decsuc |
|
12 |
|
3cn |
|
13 |
|
gbpart6 |
|
14 |
12 12 13
|
mvrraddi |
|
15 |
7 2 6 8 11 14
|
decsubi |
|
16 |
1 15
|
eqtri |
|