| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-4 |  |-  4 = ( 3 + 1 ) | 
						
							| 2 | 1 | fveq2i |  |-  ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) | 
						
							| 3 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 4 | 2 3 | fveq12i |  |-  ( ( Ack ` 4 ) ` 1 ) = ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) | 
						
							| 5 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 6 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 7 |  | ackvalsucsucval |  |-  ( ( 3 e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) ) | 
						
							| 8 | 5 6 7 | mp2an |  |-  ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) | 
						
							| 9 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 10 | 9 | fveq2i |  |-  ( Ack ` ( 3 + 1 ) ) = ( Ack ` 4 ) | 
						
							| 11 | 10 | fveq1i |  |-  ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 4 ) ` 0 ) | 
						
							| 12 |  | ackval40 |  |-  ( ( Ack ` 4 ) ` 0 ) = ; 1 3 | 
						
							| 13 | 11 12 | eqtri |  |-  ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ; 1 3 | 
						
							| 14 | 13 | fveq2i |  |-  ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( Ack ` 3 ) ` ; 1 3 ) | 
						
							| 15 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 16 | 15 5 | deccl |  |-  ; 1 3 e. NN0 | 
						
							| 17 |  | oveq1 |  |-  ( n = ; 1 3 -> ( n + 3 ) = ( ; 1 3 + 3 ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( n = ; 1 3 -> ( 2 ^ ( n + 3 ) ) = ( 2 ^ ( ; 1 3 + 3 ) ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( n = ; 1 3 -> ( ( 2 ^ ( n + 3 ) ) - 3 ) = ( ( 2 ^ ( ; 1 3 + 3 ) ) - 3 ) ) | 
						
							| 20 |  | eqid |  |-  ; 1 3 = ; 1 3 | 
						
							| 21 |  | 3p3e6 |  |-  ( 3 + 3 ) = 6 | 
						
							| 22 | 15 5 5 20 21 | decaddi |  |-  ( ; 1 3 + 3 ) = ; 1 6 | 
						
							| 23 | 22 | oveq2i |  |-  ( 2 ^ ( ; 1 3 + 3 ) ) = ( 2 ^ ; 1 6 ) | 
						
							| 24 | 23 | oveq1i |  |-  ( ( 2 ^ ( ; 1 3 + 3 ) ) - 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) | 
						
							| 25 | 19 24 | eqtrdi |  |-  ( n = ; 1 3 -> ( ( 2 ^ ( n + 3 ) ) - 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) ) | 
						
							| 26 |  | ackval3 |  |-  ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) | 
						
							| 27 |  | ovex |  |-  ( ( 2 ^ ; 1 6 ) - 3 ) e. _V | 
						
							| 28 | 25 26 27 | fvmpt |  |-  ( ; 1 3 e. NN0 -> ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) ) | 
						
							| 29 | 16 28 | ax-mp |  |-  ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) | 
						
							| 30 | 14 29 | eqtri |  |-  ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) | 
						
							| 31 | 8 30 | eqtri |  |-  ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) | 
						
							| 32 | 4 31 | eqtri |  |-  ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) |