| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-4 |  |-  4 = ( 3 + 1 ) | 
						
							| 2 | 1 | fveq2i |  |-  ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) | 
						
							| 3 | 2 | fveq1i |  |-  ( ( Ack ` 4 ) ` 0 ) = ( ( Ack ` ( 3 + 1 ) ) ` 0 ) | 
						
							| 4 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 5 |  | ackvalsuc0val |  |-  ( 3 e. NN0 -> ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 3 ) ` 1 ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 3 ) ` 1 ) | 
						
							| 7 |  | ackval3012 |  |-  <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. | 
						
							| 8 |  | fvex |  |-  ( ( Ack ` 3 ) ` 0 ) e. _V | 
						
							| 9 |  | fvex |  |-  ( ( Ack ` 3 ) ` 1 ) e. _V | 
						
							| 10 |  | fvex |  |-  ( ( Ack ` 3 ) ` 2 ) e. _V | 
						
							| 11 | 8 9 10 | otth |  |-  ( <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. <-> ( ( ( Ack ` 3 ) ` 0 ) = 5 /\ ( ( Ack ` 3 ) ` 1 ) = ; 1 3 /\ ( ( Ack ` 3 ) ` 2 ) = ; 2 9 ) ) | 
						
							| 12 | 11 | simp2bi |  |-  ( <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. -> ( ( Ack ` 3 ) ` 1 ) = ; 1 3 ) | 
						
							| 13 | 7 12 | ax-mp |  |-  ( ( Ack ` 3 ) ` 1 ) = ; 1 3 | 
						
							| 14 | 3 6 13 | 3eqtri |  |-  ( ( Ack ` 4 ) ` 0 ) = ; 1 3 |