| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 2 |  | ackvalsuc1 |  |-  ( ( M e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( M e. NN0 -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) ) | 
						
							| 4 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 5 | 4 | a1i |  |-  ( M e. NN0 -> ( 0 + 1 ) = 1 ) | 
						
							| 6 | 5 | fveq2d |  |-  ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` 1 ) ) | 
						
							| 7 |  | ackfnnn0 |  |-  ( M e. NN0 -> ( Ack ` M ) Fn NN0 ) | 
						
							| 8 |  | fnfun |  |-  ( ( Ack ` M ) Fn NN0 -> Fun ( Ack ` M ) ) | 
						
							| 9 |  | funrel |  |-  ( Fun ( Ack ` M ) -> Rel ( Ack ` M ) ) | 
						
							| 10 | 7 8 9 | 3syl |  |-  ( M e. NN0 -> Rel ( Ack ` M ) ) | 
						
							| 11 |  | fvex |  |-  ( Ack ` M ) e. _V | 
						
							| 12 |  | itcoval1 |  |-  ( ( Rel ( Ack ` M ) /\ ( Ack ` M ) e. _V ) -> ( ( IterComp ` ( Ack ` M ) ) ` 1 ) = ( Ack ` M ) ) | 
						
							| 13 | 10 11 12 | sylancl |  |-  ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` 1 ) = ( Ack ` M ) ) | 
						
							| 14 | 6 13 | eqtrd |  |-  ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) = ( Ack ` M ) ) | 
						
							| 15 | 14 | fveq1d |  |-  ( M e. NN0 -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) = ( ( Ack ` M ) ` 1 ) ) | 
						
							| 16 | 3 15 | eqtrd |  |-  ( M e. NN0 -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( Ack ` M ) ` 1 ) ) |