Metamath Proof Explorer


Theorem addrfn

Description: Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion addrfn ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 +𝑟 𝐵 ) Fn ℝ )

Proof

Step Hyp Ref Expression
1 ovex ( ( 𝐴𝑥 ) + ( 𝐵𝑥 ) ) ∈ V
2 eqid ( 𝑥 ∈ ℝ ↦ ( ( 𝐴𝑥 ) + ( 𝐵𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐴𝑥 ) + ( 𝐵𝑥 ) ) )
3 1 2 fnmpti ( 𝑥 ∈ ℝ ↦ ( ( 𝐴𝑥 ) + ( 𝐵𝑥 ) ) ) Fn ℝ
4 addrval ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 +𝑟 𝐵 ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐴𝑥 ) + ( 𝐵𝑥 ) ) ) )
5 4 fneq1d ( ( 𝐴𝐶𝐵𝐷 ) → ( ( 𝐴 +𝑟 𝐵 ) Fn ℝ ↔ ( 𝑥 ∈ ℝ ↦ ( ( 𝐴𝑥 ) + ( 𝐵𝑥 ) ) ) Fn ℝ ) )
6 3 5 mpbiri ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 +𝑟 𝐵 ) Fn ℝ )