Metamath Proof Explorer


Theorem addrfn

Description: Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion addrfn A C B D A + r B Fn

Proof

Step Hyp Ref Expression
1 ovex A x + B x V
2 eqid x A x + B x = x A x + B x
3 1 2 fnmpti x A x + B x Fn
4 addrval A C B D A + r B = x A x + B x
5 4 fneq1d A C B D A + r B Fn x A x + B x Fn
6 3 5 mpbiri A C B D A + r B Fn