Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Geometry
addrval
Next ⟩
subrval
Metamath Proof Explorer
Ascii
Unicode
Theorem
addrval
Description:
Value of the operation of vector addition.
(Contributed by
Andrew Salmon
, 27-Jan-2012)
Ref
Expression
Assertion
addrval
⊢
A
∈
C
∧
B
∈
D
→
A
+
r
B
=
v
∈
ℝ
⟼
A
⁡
v
+
B
⁡
v
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
A
∈
C
→
A
∈
V
2
elex
⊢
B
∈
D
→
B
∈
V
3
fveq1
⊢
x
=
A
→
x
⁡
v
=
A
⁡
v
4
fveq1
⊢
y
=
B
→
y
⁡
v
=
B
⁡
v
5
3
4
oveqan12d
⊢
x
=
A
∧
y
=
B
→
x
⁡
v
+
y
⁡
v
=
A
⁡
v
+
B
⁡
v
6
5
mpteq2dv
⊢
x
=
A
∧
y
=
B
→
v
∈
ℝ
⟼
x
⁡
v
+
y
⁡
v
=
v
∈
ℝ
⟼
A
⁡
v
+
B
⁡
v
7
df-addr
⊢
+
r
=
x
∈
V
,
y
∈
V
⟼
v
∈
ℝ
⟼
x
⁡
v
+
y
⁡
v
8
reex
⊢
ℝ
∈
V
9
8
mptex
⊢
v
∈
ℝ
⟼
A
⁡
v
+
B
⁡
v
∈
V
10
6
7
9
ovmpoa
⊢
A
∈
V
∧
B
∈
V
→
A
+
r
B
=
v
∈
ℝ
⟼
A
⁡
v
+
B
⁡
v
11
1
2
10
syl2an
⊢
A
∈
C
∧
B
∈
D
→
A
+
r
B
=
v
∈
ℝ
⟼
A
⁡
v
+
B
⁡
v