Metamath Proof Explorer


Theorem subrval

Description: Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion subrval A C B D A - r B = v A v B v

Proof

Step Hyp Ref Expression
1 elex A C A V
2 elex B D B V
3 fveq1 x = A x v = A v
4 fveq1 y = B y v = B v
5 3 4 oveqan12d x = A y = B x v y v = A v B v
6 5 mpteq2dv x = A y = B v x v y v = v A v B v
7 df-subr - r = x V , y V v x v y v
8 reex V
9 8 mptex v A v B v V
10 6 7 9 ovmpoa A V B V A - r B = v A v B v
11 1 2 10 syl2an A C B D A - r B = v A v B v