Metamath Proof Explorer


Theorem adh-minim-ax2c

Description: Derivation of a commuted form of ax-2 from adh-minim and ax-mp . Polish prefix notation: CCpqCCpCqrCpr . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion adh-minim-ax2c ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 adh-minim-ax2-lem5 ( ( 𝜑𝜓 ) → ( ( ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) → 𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) )
2 adh-minim-ax2-lem6 ( ( ( ( ( 𝜎𝜌 ) → 𝜇 ) → ( ( 𝜌 → ( 𝜇𝜆 ) ) → ( 𝜌𝜆 ) ) ) → ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) ) → ( ( ( ( 𝜎𝜌 ) → 𝜇 ) → ( ( 𝜌 → ( 𝜇𝜆 ) ) → ( 𝜌𝜆 ) ) ) → 𝜑 ) )
3 adh-minim-ax2-lem6 ( ( ( ( ( ( 𝜎𝜌 ) → 𝜇 ) → ( ( 𝜌 → ( 𝜇𝜆 ) ) → ( 𝜌𝜆 ) ) ) → ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) ) → ( ( ( ( 𝜎𝜌 ) → 𝜇 ) → ( ( 𝜌 → ( 𝜇𝜆 ) ) → ( 𝜌𝜆 ) ) ) → 𝜑 ) ) → ( ( ( ( ( 𝜎𝜌 ) → 𝜇 ) → ( ( 𝜌 → ( 𝜇𝜆 ) ) → ( 𝜌𝜆 ) ) ) → ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) ) → 𝜑 ) )
4 2 3 ax-mp ( ( ( ( ( 𝜎𝜌 ) → 𝜇 ) → ( ( 𝜌 → ( 𝜇𝜆 ) ) → ( 𝜌𝜆 ) ) ) → ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) ) → 𝜑 )
5 adh-minim-ax1-ax2-lem4 ( ( ( ( ( ( 𝜎𝜌 ) → 𝜇 ) → ( ( 𝜌 → ( 𝜇𝜆 ) ) → ( 𝜌𝜆 ) ) ) → ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) ) → 𝜑 ) → ( ( ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) → 𝜓 ) ) )
6 4 5 ax-mp ( ( ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) → 𝜓 ) )
7 adh-minim-ax1-ax2-lem4 ( ( ( ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) → ( 𝜑𝜓 ) ) → ( ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) → 𝜓 ) ) → ( ( ( 𝜑𝜓 ) → ( ( ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) → 𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) ) )
8 6 7 ax-mp ( ( ( 𝜑𝜓 ) → ( ( ( ( ( ( 𝜃𝜏 ) → 𝜂 ) → ( ( 𝜏 → ( 𝜂𝜁 ) ) → ( 𝜏𝜁 ) ) ) → 𝜑 ) → 𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) ) )
9 1 8 ax-mp ( ( 𝜑𝜓 ) → ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )