Metamath Proof Explorer


Theorem afv20defat

Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv20defat ( ( 𝐹 '''' 𝐴 ) = ∅ → 𝐹 defAt 𝐴 )

Proof

Step Hyp Ref Expression
1 ndfatafv2 ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = 𝒫 ran 𝐹 )
2 pwne0 𝒫 ran 𝐹 ≠ ∅
3 2 neii ¬ 𝒫 ran 𝐹 = ∅
4 eqeq1 ( ( 𝐹 '''' 𝐴 ) = 𝒫 ran 𝐹 → ( ( 𝐹 '''' 𝐴 ) = ∅ ↔ 𝒫 ran 𝐹 = ∅ ) )
5 3 4 mtbiri ( ( 𝐹 '''' 𝐴 ) = 𝒫 ran 𝐹 → ¬ ( 𝐹 '''' 𝐴 ) = ∅ )
6 1 5 syl ( ¬ 𝐹 defAt 𝐴 → ¬ ( 𝐹 '''' 𝐴 ) = ∅ )
7 6 con4i ( ( 𝐹 '''' 𝐴 ) = ∅ → 𝐹 defAt 𝐴 )