Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | afv20defat | ⊢ ( ( 𝐹 '''' 𝐴 ) = ∅ → 𝐹 defAt 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndfatafv2 | ⊢ ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = 𝒫 ∪ ran 𝐹 ) | |
2 | pwne0 | ⊢ 𝒫 ∪ ran 𝐹 ≠ ∅ | |
3 | 2 | neii | ⊢ ¬ 𝒫 ∪ ran 𝐹 = ∅ |
4 | eqeq1 | ⊢ ( ( 𝐹 '''' 𝐴 ) = 𝒫 ∪ ran 𝐹 → ( ( 𝐹 '''' 𝐴 ) = ∅ ↔ 𝒫 ∪ ran 𝐹 = ∅ ) ) | |
5 | 3 4 | mtbiri | ⊢ ( ( 𝐹 '''' 𝐴 ) = 𝒫 ∪ ran 𝐹 → ¬ ( 𝐹 '''' 𝐴 ) = ∅ ) |
6 | 1 5 | syl | ⊢ ( ¬ 𝐹 defAt 𝐴 → ¬ ( 𝐹 '''' 𝐴 ) = ∅ ) |
7 | 6 | con4i | ⊢ ( ( 𝐹 '''' 𝐴 ) = ∅ → 𝐹 defAt 𝐴 ) |