Metamath Proof Explorer


Theorem afv20defat

Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv20defat
|- ( ( F '''' A ) = (/) -> F defAt A )

Proof

Step Hyp Ref Expression
1 ndfatafv2
 |-  ( -. F defAt A -> ( F '''' A ) = ~P U. ran F )
2 pwne0
 |-  ~P U. ran F =/= (/)
3 2 neii
 |-  -. ~P U. ran F = (/)
4 eqeq1
 |-  ( ( F '''' A ) = ~P U. ran F -> ( ( F '''' A ) = (/) <-> ~P U. ran F = (/) ) )
5 3 4 mtbiri
 |-  ( ( F '''' A ) = ~P U. ran F -> -. ( F '''' A ) = (/) )
6 1 5 syl
 |-  ( -. F defAt A -> -. ( F '''' A ) = (/) )
7 6 con4i
 |-  ( ( F '''' A ) = (/) -> F defAt A )