Metamath Proof Explorer


Theorem afv20defat

Description: If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv20defat F '''' A = F defAt A

Proof

Step Hyp Ref Expression
1 ndfatafv2 ¬ F defAt A F '''' A = 𝒫 ran F
2 pwne0 𝒫 ran F
3 2 neii ¬ 𝒫 ran F =
4 eqeq1 F '''' A = 𝒫 ran F F '''' A = 𝒫 ran F =
5 3 4 mtbiri F '''' A = 𝒫 ran F ¬ F '''' A =
6 1 5 syl ¬ F defAt A ¬ F '''' A =
7 6 con4i F '''' A = F defAt A