| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ajfuni.5 | ⊢ 𝐴  =  ( 𝑈 adj 𝑊 ) | 
						
							| 2 |  | ajfuni.u | ⊢ 𝑈  ∈  CPreHilOLD | 
						
							| 3 |  | ajfuni.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 4 |  | funopab | ⊢ ( Fun  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) }  ↔  ∀ 𝑡 ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( BaseSet ‘ 𝑈 )  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 6 |  | eqid | ⊢ ( ·𝑖OLD ‘ 𝑈 )  =  ( ·𝑖OLD ‘ 𝑈 ) | 
						
							| 7 | 5 6 2 | ajmoi | ⊢ ∃* 𝑠 ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) | 
						
							| 8 |  | 3simpc | ⊢ ( ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) )  →  ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 9 | 8 | moimi | ⊢ ( ∃* 𝑠 ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) )  →  ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 10 | 7 9 | ax-mp | ⊢ ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) | 
						
							| 11 | 4 10 | mpgbir | ⊢ Fun  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } | 
						
							| 12 | 2 | phnvi | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 13 |  | eqid | ⊢ ( BaseSet ‘ 𝑊 )  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 14 |  | eqid | ⊢ ( ·𝑖OLD ‘ 𝑊 )  =  ( ·𝑖OLD ‘ 𝑊 ) | 
						
							| 15 | 5 13 6 14 1 | ajfval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝐴  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) | 
						
							| 16 | 12 3 15 | mp2an | ⊢ 𝐴  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } | 
						
							| 17 | 16 | funeqi | ⊢ ( Fun  𝐴  ↔  Fun  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 )  ∧  𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑈 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) | 
						
							| 18 | 11 17 | mpbir | ⊢ Fun  𝐴 |