Metamath Proof Explorer


Theorem ajmoi

Description: Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ip2eqi.1 𝑋 = ( BaseSet ‘ 𝑈 )
ip2eqi.7 𝑃 = ( ·𝑖OLD𝑈 )
ip2eqi.u 𝑈 ∈ CPreHilOLD
Assertion ajmoi ∃* 𝑠 ( 𝑠 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 ip2eqi.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 ip2eqi.7 𝑃 = ( ·𝑖OLD𝑈 )
3 ip2eqi.u 𝑈 ∈ CPreHilOLD
4 r19.26-2 ( ∀ 𝑥𝑋𝑦𝑌 ( ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ∧ ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) ↔ ( ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) )
5 eqtr2 ( ( ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ∧ ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) → ( 𝑥 𝑃 ( 𝑠𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) )
6 5 2ralimi ( ∀ 𝑥𝑋𝑦𝑌 ( ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ∧ ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) → ∀ 𝑥𝑋𝑦𝑌 ( 𝑥 𝑃 ( 𝑠𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) )
7 4 6 sylbir ( ( ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) → ∀ 𝑥𝑋𝑦𝑌 ( 𝑥 𝑃 ( 𝑠𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) )
8 1 2 3 phoeqi ( ( 𝑠 : 𝑌𝑋𝑡 : 𝑌𝑋 ) → ( ∀ 𝑥𝑋𝑦𝑌 ( 𝑥 𝑃 ( 𝑠𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ↔ 𝑠 = 𝑡 ) )
9 8 biimpa ( ( ( 𝑠 : 𝑌𝑋𝑡 : 𝑌𝑋 ) ∧ ∀ 𝑥𝑋𝑦𝑌 ( 𝑥 𝑃 ( 𝑠𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) → 𝑠 = 𝑡 )
10 7 9 sylan2 ( ( ( 𝑠 : 𝑌𝑋𝑡 : 𝑌𝑋 ) ∧ ( ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) ) → 𝑠 = 𝑡 )
11 10 an4s ( ( ( 𝑠 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ) ∧ ( 𝑡 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) ) → 𝑠 = 𝑡 )
12 11 gen2 𝑠𝑡 ( ( ( 𝑠 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ) ∧ ( 𝑡 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) ) → 𝑠 = 𝑡 )
13 feq1 ( 𝑠 = 𝑡 → ( 𝑠 : 𝑌𝑋𝑡 : 𝑌𝑋 ) )
14 fveq1 ( 𝑠 = 𝑡 → ( 𝑠𝑦 ) = ( 𝑡𝑦 ) )
15 14 oveq2d ( 𝑠 = 𝑡 → ( 𝑥 𝑃 ( 𝑠𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) )
16 15 eqeq2d ( 𝑠 = 𝑡 → ( ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ↔ ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) )
17 16 2ralbidv ( 𝑠 = 𝑡 → ( ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ↔ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) )
18 13 17 anbi12d ( 𝑠 = 𝑡 → ( ( 𝑠 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ) ↔ ( 𝑡 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) ) )
19 18 mo4 ( ∃* 𝑠 ( 𝑠 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ) ↔ ∀ 𝑠𝑡 ( ( ( 𝑠 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) ) ∧ ( 𝑡 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡𝑦 ) ) ) ) → 𝑠 = 𝑡 ) )
20 12 19 mpbir ∃* 𝑠 ( 𝑠 : 𝑌𝑋 ∧ ∀ 𝑥𝑋𝑦𝑌 ( ( 𝑇𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠𝑦 ) ) )