| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ip2eqi.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | ip2eqi.7 | ⊢ 𝑃  =  ( ·𝑖OLD ‘ 𝑈 ) | 
						
							| 3 |  | ip2eqi.u | ⊢ 𝑈  ∈  CPreHilOLD | 
						
							| 4 |  | ralcom | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) )  =  ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑌 ∀ 𝑥  ∈  𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) )  =  ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 5 |  | ffvelcdm | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋  ∧  𝑦  ∈  𝑌 )  →  ( 𝑆 ‘ 𝑦 )  ∈  𝑋 ) | 
						
							| 6 |  | ffvelcdm | ⊢ ( ( 𝑇 : 𝑌 ⟶ 𝑋  ∧  𝑦  ∈  𝑌 )  →  ( 𝑇 ‘ 𝑦 )  ∈  𝑋 ) | 
						
							| 7 | 1 2 3 | ip2eqi | ⊢ ( ( ( 𝑆 ‘ 𝑦 )  ∈  𝑋  ∧  ( 𝑇 ‘ 𝑦 )  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) )  =  ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) )  ↔  ( 𝑆 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 8 | 5 6 7 | syl2an | ⊢ ( ( ( 𝑆 : 𝑌 ⟶ 𝑋  ∧  𝑦  ∈  𝑌 )  ∧  ( 𝑇 : 𝑌 ⟶ 𝑋  ∧  𝑦  ∈  𝑌 ) )  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) )  =  ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) )  ↔  ( 𝑆 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 9 | 8 | anandirs | ⊢ ( ( ( 𝑆 : 𝑌 ⟶ 𝑋  ∧  𝑇 : 𝑌 ⟶ 𝑋 )  ∧  𝑦  ∈  𝑌 )  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) )  =  ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) )  ↔  ( 𝑆 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 10 | 9 | ralbidva | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋  ∧  𝑇 : 𝑌 ⟶ 𝑋 )  →  ( ∀ 𝑦  ∈  𝑌 ∀ 𝑥  ∈  𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) )  =  ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑆 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 11 |  | ffn | ⊢ ( 𝑆 : 𝑌 ⟶ 𝑋  →  𝑆  Fn  𝑌 ) | 
						
							| 12 |  | ffn | ⊢ ( 𝑇 : 𝑌 ⟶ 𝑋  →  𝑇  Fn  𝑌 ) | 
						
							| 13 |  | eqfnfv | ⊢ ( ( 𝑆  Fn  𝑌  ∧  𝑇  Fn  𝑌 )  →  ( 𝑆  =  𝑇  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑆 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋  ∧  𝑇 : 𝑌 ⟶ 𝑋 )  →  ( 𝑆  =  𝑇  ↔  ∀ 𝑦  ∈  𝑌 ( 𝑆 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 15 | 10 14 | bitr4d | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋  ∧  𝑇 : 𝑌 ⟶ 𝑋 )  →  ( ∀ 𝑦  ∈  𝑌 ∀ 𝑥  ∈  𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) )  =  ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) )  ↔  𝑆  =  𝑇 ) ) | 
						
							| 16 | 4 15 | bitrid | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋  ∧  𝑇 : 𝑌 ⟶ 𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) )  =  ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) )  ↔  𝑆  =  𝑇 ) ) |