Metamath Proof Explorer


Theorem albitr

Description: Theorem *10.301 in WhiteheadRussell p. 151. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion albitr ( ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜓𝜒 ) ) → ∀ 𝑥 ( 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 bitr ( ( ( 𝜑𝜓 ) ∧ ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) )
2 1 alanimi ( ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜓𝜒 ) ) → ∀ 𝑥 ( 𝜑𝜒 ) )