Description: Theorem *10.301 in WhiteheadRussell p. 151. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | albitr | ⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) → ∀ 𝑥 ( 𝜑 ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) ∧ ( 𝜓 ↔ 𝜒 ) ) → ( 𝜑 ↔ 𝜒 ) ) | |
2 | 1 | alanimi | ⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) ∧ ∀ 𝑥 ( 𝜓 ↔ 𝜒 ) ) → ∀ 𝑥 ( 𝜑 ↔ 𝜒 ) ) |