Description: Theorem *10.301 in WhiteheadRussell p. 151. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | albitr | |- ( ( A. x ( ph <-> ps ) /\ A. x ( ps <-> ch ) ) -> A. x ( ph <-> ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bitr | |- ( ( ( ph <-> ps ) /\ ( ps <-> ch ) ) -> ( ph <-> ch ) ) | |
| 2 | 1 | alanimi | |- ( ( A. x ( ph <-> ps ) /\ A. x ( ps <-> ch ) ) -> A. x ( ph <-> ch ) ) |