Description: Theorem *10.301 in WhiteheadRussell p. 151. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | albitr | |- ( ( A. x ( ph <-> ps ) /\ A. x ( ps <-> ch ) ) -> A. x ( ph <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr | |- ( ( ( ph <-> ps ) /\ ( ps <-> ch ) ) -> ( ph <-> ch ) ) |
|
2 | 1 | alanimi | |- ( ( A. x ( ph <-> ps ) /\ A. x ( ps <-> ch ) ) -> A. x ( ph <-> ch ) ) |