| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephsdom |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ ( ℵ ‘ 𝐴 ) ↔ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ ( ℵ ‘ 𝐴 ) ↔ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 ∈ ( ℵ ‘ 𝐴 ) ↔ ¬ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 4 |
|
alephon |
⊢ ( ℵ ‘ 𝐴 ) ∈ On |
| 5 |
4
|
onordi |
⊢ Ord ( ℵ ‘ 𝐴 ) |
| 6 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
| 7 |
|
ordtri1 |
⊢ ( ( Ord ( ℵ ‘ 𝐴 ) ∧ Ord 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 8 |
5 6 7
|
sylancr |
⊢ ( 𝐵 ∈ On → ( ( ℵ ‘ 𝐴 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( ℵ ‘ 𝐴 ) ) ) |
| 10 |
|
domtriord |
⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ 𝐵 ↔ ¬ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 11 |
4 10
|
mpan |
⊢ ( 𝐵 ∈ On → ( ( ℵ ‘ 𝐴 ) ≼ 𝐵 ↔ ¬ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ 𝐵 ↔ ¬ 𝐵 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 13 |
3 9 12
|
3bitr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ⊆ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≼ 𝐵 ) ) |