Metamath Proof Explorer


Theorem alephsuc

Description: Value of the aleph function at a successor ordinal. Definition 12(ii) of Suppes p. 91. Here we express the successor aleph in terms of the Hartogs function df-har , which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion alephsuc ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = ( har ‘ ( ℵ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 rdgsuc ( 𝐴 ∈ On → ( rec ( har , ω ) ‘ suc 𝐴 ) = ( har ‘ ( rec ( har , ω ) ‘ 𝐴 ) ) )
2 df-aleph ℵ = rec ( har , ω )
3 2 fveq1i ( ℵ ‘ suc 𝐴 ) = ( rec ( har , ω ) ‘ suc 𝐴 )
4 2 fveq1i ( ℵ ‘ 𝐴 ) = ( rec ( har , ω ) ‘ 𝐴 )
5 4 fveq2i ( har ‘ ( ℵ ‘ 𝐴 ) ) = ( har ‘ ( rec ( har , ω ) ‘ 𝐴 ) )
6 1 3 5 3eqtr4g ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = ( har ‘ ( ℵ ‘ 𝐴 ) ) )