Description: A relationship between two quantifiers and negation. (Contributed by NM, 18-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alexn | ⊢ ( ∀ 𝑥 ∃ 𝑦 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∀ 𝑦 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnal | ⊢ ( ∃ 𝑦 ¬ 𝜑 ↔ ¬ ∀ 𝑦 𝜑 ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ∃ 𝑦 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ∀ 𝑦 𝜑 ) |
| 3 | alnex | ⊢ ( ∀ 𝑥 ¬ ∀ 𝑦 𝜑 ↔ ¬ ∃ 𝑥 ∀ 𝑦 𝜑 ) | |
| 4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∃ 𝑦 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∀ 𝑦 𝜑 ) |