| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → 𝜓 ) |
| 2 |
1
|
a1i |
⊢ ( ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → 𝜓 ) ) |
| 3 |
|
ax-5 |
⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) |
| 4 |
2 3
|
syl6 |
⊢ ( ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → ∀ 𝑥 𝜓 ) ) |
| 5 |
|
simp2 |
⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → 𝜑 ) |
| 6 |
5
|
imim1i |
⊢ ( ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → ∀ 𝑥 𝜑 ) ) |
| 7 |
|
simp3 |
⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → 𝜒 ) |
| 8 |
7
|
a1i |
⊢ ( ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → 𝜒 ) ) |
| 9 |
|
ax-5 |
⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) |
| 10 |
8 9
|
syl6 |
⊢ ( ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → ∀ 𝑥 𝜒 ) ) |
| 11 |
4 6 10
|
3jcad |
⊢ ( ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → ( ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜒 ) ) ) |
| 12 |
|
19.26-3an |
⊢ ( ∀ 𝑥 ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ↔ ( ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜒 ) ) |
| 13 |
11 12
|
imbitrrdi |
⊢ ( ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → ∀ 𝑥 ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ) ) |