| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  𝜓 ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  𝜓 ) ) | 
						
							| 3 |  | ax-5 | ⊢ ( 𝜓  →  ∀ 𝑥 𝜓 ) | 
						
							| 4 | 2 3 | syl6 | ⊢ ( ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  ∀ 𝑥 𝜓 ) ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  𝜑 ) | 
						
							| 6 | 5 | imim1i | ⊢ ( ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  𝜒 ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  𝜒 ) ) | 
						
							| 9 |  | ax-5 | ⊢ ( 𝜒  →  ∀ 𝑥 𝜒 ) | 
						
							| 10 | 8 9 | syl6 | ⊢ ( ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  ∀ 𝑥 𝜒 ) ) | 
						
							| 11 | 4 6 10 | 3jcad | ⊢ ( ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  ( ∀ 𝑥 𝜓  ∧  ∀ 𝑥 𝜑  ∧  ∀ 𝑥 𝜒 ) ) ) | 
						
							| 12 |  | 19.26-3an | ⊢ ( ∀ 𝑥 ( 𝜓  ∧  𝜑  ∧  𝜒 )  ↔  ( ∀ 𝑥 𝜓  ∧  ∀ 𝑥 𝜑  ∧  ∀ 𝑥 𝜒 ) ) | 
						
							| 13 | 11 12 | imbitrrdi | ⊢ ( ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ( ( 𝜓  ∧  𝜑  ∧  𝜒 )  →  ∀ 𝑥 ( 𝜓  ∧  𝜑  ∧  𝜒 ) ) ) |