| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( ps /\ ph /\ ch ) -> ps ) |
| 2 |
1
|
a1i |
|- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> ps ) ) |
| 3 |
|
ax-5 |
|- ( ps -> A. x ps ) |
| 4 |
2 3
|
syl6 |
|- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ps ) ) |
| 5 |
|
simp2 |
|- ( ( ps /\ ph /\ ch ) -> ph ) |
| 6 |
5
|
imim1i |
|- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ph ) ) |
| 7 |
|
simp3 |
|- ( ( ps /\ ph /\ ch ) -> ch ) |
| 8 |
7
|
a1i |
|- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> ch ) ) |
| 9 |
|
ax-5 |
|- ( ch -> A. x ch ) |
| 10 |
8 9
|
syl6 |
|- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ch ) ) |
| 11 |
4 6 10
|
3jcad |
|- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> ( A. x ps /\ A. x ph /\ A. x ch ) ) ) |
| 12 |
|
19.26-3an |
|- ( A. x ( ps /\ ph /\ ch ) <-> ( A. x ps /\ A. x ph /\ A. x ch ) ) |
| 13 |
11 12
|
imbitrrdi |
|- ( ( ph -> A. x ph ) -> ( ( ps /\ ph /\ ch ) -> A. x ( ps /\ ph /\ ch ) ) ) |