Description: Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | anandir | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anidm | ⊢ ( ( 𝜒 ∧ 𝜒 ) ↔ 𝜒 ) | |
| 2 | 1 | anbi2i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | 
| 3 | an4 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 4 | 2 3 | bitr3i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜓 ∧ 𝜒 ) ) ) |