Metamath Proof Explorer
Description: Left-associative property of an associative algebra, deduction version.
(Contributed by Thierry Arnoux, 15-Feb-2026)
|
|
Ref |
Expression |
|
Hypotheses |
assaassd.1 |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
assaassd.2 |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
assaassd.3 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
|
|
assaassd.4 |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
|
|
assaassd.5 |
⊢ × = ( .r ‘ 𝑊 ) |
|
|
assaassd.6 |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
|
|
assaassd.7 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
|
|
assaassd.8 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
|
|
assaassd.9 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
|
Assertion |
assaassd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
assaassd.1 |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
assaassd.2 |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
assaassd.3 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
|
assaassd.4 |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
assaassd.5 |
⊢ × = ( .r ‘ 𝑊 ) |
| 6 |
|
assaassd.6 |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
| 7 |
|
assaassd.7 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 8 |
|
assaassd.8 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
assaassd.9 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 10 |
1 2 3 4 5
|
assaass |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
| 11 |
6 7 8 9 10
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |